• 제목/요약/키워드: terrain information

검색결과 746건 처리시간 0.03초

TERPROM 기반의 저고도 지형추적시스템 개발 (Development of Low Altitude Terrain Following System based on TERain PROfile Matching)

  • 김종섭;조인제;이동규;강임주
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

주행로봇 제어를 위한 험지의 최대마찰계수 추정 (Estimation of the Maximum Friction Coefficient of the Rough Terrain to Control the Mobile Robots)

  • 강현석;곽윤근;최현도;정해관;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1062-1072
    • /
    • 2008
  • When mobile robots perform the mission in the rough terrain, the traversability depended on the terrain characteristic is useful information. In the traversabilities, wheel-terrain maximum friction coefficient can indicate the index to control wheel-terrain traction force or whether mobile robots to go or not. This paper proposes estimating wheel-terrain maximum friction coefficient. The existing method to estimate the maximum friction coefficient is limited in flat terrain or relatively easy driving knowing wheel absolute velocity. But this algorithm is applicable in rough terrain where a lot of slip occurred not knowing wheel absolute velocity. This algorithm applies the tire-friction model to each wheel to express the behavior of wheel friction and classifies slip-friction characteristic into 3 major cases. In each case, the specific algorithm to estimate the maximum friction coefficient is applied. To test the proposed algorithm's feasibility, test bed(ROBHAZ-6WHEEL) simulations are performed. And then the experiment to estimate the maximum friction coefficient of the test bed is performed. To compare the estimated value with the real, we measure the real maximum friction coefficient. As a result of the experiment, the proposed algorithm has high accuracy in estimating the maximum friction coefficient.

불규칙삼각망에 의한 지형체적 산정에 관한 연구 (A Study on the Estimation of Terrain Volume Using Triangulated Irregular Network)

  • 정인주;김상용
    • 대한공간정보학회지
    • /
    • 제11권1호
    • /
    • pp.77-82
    • /
    • 2003
  • GIS는 지금까지 여러 학계를 걸쳐서 응용단계에 접어들었으며, 특히 토목분야에서도 많은 응용을 하고 있다. GIS를 이용한 공간분석에서 지형을 정확하게 표현하는 것은 매우 중요하며 향후 3차원적 해석을 하기 위해서는 중요한 인자가 될 수도 있다. 이러한 지형을 표현하기 위해 주로 불규칙삼각망을 이용하고 있다. 따라서 본 연구에서는 불규칙삼각망에 의한 지형의 체적을 개발된 식에 의하여 산정을 하였다.

  • PDF

측면주사음탐기를 이용한 연안지역 해저지형탐사 (Submarine Terrain Exploration for the Coast Using Side Scan Sonar)

  • 이종출;문두열;김대현;서동주
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.539-544
    • /
    • 2004
  • In this study, locational information data acquisited by using the side scan sonar which is more precise than traditional submarine terrain' survey equipment. And the result of exploration through the object area(the East sea), accurate submarine terrain could be deciphered by sounded image. Also, in the future, side scan sonar's application will be maximized for the submarine terrain's sediment investigation to design or construction of ocean facilities.

  • PDF

지상레이저스캐닝 데이터를 활용한 3차원 지반지형 분석 플랫폼 개발 (Development of 3D Terrain Processing Platform Using Terrestrial Laser Scanning Data)

  • 김석;김태영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.227-228
    • /
    • 2016
  • Terrestrial laser scanning (TLS) technology is being applied to various fields such as the soil volume calculation and the displacement measurement of terrain, tunnels and dams. This study develops a 3D terrain processing platform for automated earth work using a terrestrial laser scanning data as the software prototype. The developed software provides cells with geo-technical information for planning work to an integrated system.

  • PDF

3차원 지형정보를 이용한 지형영상의 정합기법 (Terrain Matching Technique Using 3-D Terrain Maps)

  • 김준식;강민석;박래홍;이쾌희
    • 대한원격탐사학회지
    • /
    • 제7권1호
    • /
    • pp.13-27
    • /
    • 1991
  • DEM(digital elevation map) is a very useful information in various applications. In this paper, we have studied on the terrain matching algorithm using the DEM, which was proposed by Rodriguez and Aggarwal(1990) for an aircraft navigation system. We evaluated its performance using syntactic images. Cliff maps and critical points are used for the reduction of computation time and information size to be processed. The computer simulation shows that though the computational complexity is high, the technique is efficient even to noisy images.

Support Vector Machine 기반 지형분류 기법 (Terrain Cover Classification Technique Based on Support Vector Machine)

  • 성기열;박준성;유준
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.55-59
    • /
    • 2008
  • 야외 환경에서 무인차량의 자율주행에 있어서 효과적인 기동제어를 위해서는 장애물 탐지나 지형의 기하학적인 형상 정보외에 탐지된 장애물 및 지형 표면에 대한 재질 유형의 인식 및 분류 또한 중요한 요소이다. 영상 기반의 지표면 분류 알고리듬은 입력 영상에 대한 전처리, 특징추출, 분류 및 후처리의 절차로 수행된다. 본 논문에서는 컬러 CCD 카메라로부터 획득된 야외 지형영상에 대해 색상 및 질감 정보를 이용한 지형분류 기법을 제시한다. 전처리 단계에서 색공간 변환을 수행하고, 색상과 질감 정보를 이용하기 위해 웨이블릿 변환 특징을 사용하였으며, 분류기로서는 SVM(support vector machine)을 적용하였다. 야외 환경에서 획득된 실영상에 대한 실험을 통하여 제시된 알고리듬의 분류 성능을 평가하였으며, 제시된 알고리듬에 의한 효과적인 야지 지형분류의 가능성을 확인하였다.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

2차원 설계자료를 이용한 3차원 지형모델 자동화 생성 방안 (The Methods for 3D Terrain Model Automation Using 2D Plan)

  • 이현직;박은관;문건수
    • 대한공간정보학회지
    • /
    • 제21권1호
    • /
    • pp.87-93
    • /
    • 2013
  • 3차원 시뮬레이션을 이용하여 조망, 일조, 일영, 직광 등 3차원 공간분석에 대한 분야가 발전함에 따라 3차원 시뮬레이션에 필요한 3차원 지형모델 제작에 관한 연구가 필요하게 되었다. 본 연구에서는 법선의 방정식을 이용하여 2차원 설계도면을 3차원 지형모델로 변환함으로써 개발후의 3차원 지형모델을 생성하는 방안을 제시하였다. 2차원 설계로부터 3차원 지형모델 생성을 위한 자동화 알고리즘을 개발하였으며, 향후 세부적인 연구가 필요할 것으로 예상된다.