• Title/Summary/Keyword: terrain effects

Search Result 186, Processing Time 0.027 seconds

Computations of Terrain Effect within a Limited Area in Geodetic Gravity Field Modelling

  • Yun, Hong-Sic;Suh, Yong-Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 1995
  • This paper describes the test results of terrain corrections as the short wave length effect and geoid effects in gravity field modelling using Digital Terrain Model(DTM) in Korea. For a rigorous determination of terrain correction a dense grided DTM data wave prepard spacing $500\times{500m}$ was used for the computation of terrain effects. From the results obtained by the mass prism model and the mass line model, we were found that the terrain effects are large depend on the topography in the test area. It means that we should considered the terrain effects for the precise geoid determination.

  • PDF

A NUMERICAL STUDY ON THE WIND EFFECTS OF MOUNTAINOUS TERRAIN FOR THE SKI RESORT (스키장의 풍환경 개선을 위한 수치해석 연구)

  • Jung, Jae-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.493-495
    • /
    • 2010
  • A three-dimensional flow simulation is performed to investigate the flow field in the ski resort on complex terrain. The present paper aims to study the wind effects of mountainous terrain on the gondola safety. Strong wind happens in the ski resort on the mountain by complex terrain and it causes the dangerous accident of gondola. A digital map around the ski resort area is used to model the actual complex terrain for a 3-D analysis domain. Wind direction and speed to be used as a boundary condition are taken from local meteorological reports. The numerical results show details of the velocity distribution around a ski resort. From the results, we can suggest the modification of the installation of gondola for the safety due to strong wind.

  • PDF

Simulation Uleung Island By The Statistical Fractals (프랙탈 기법에 의한 울릉도 형상화 사례 연구)

  • 노용덕
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • In 3D computer graphics, fractal techniques have been applied to terrain models. Even though fractal models have become popular for recreating a wide variety of the shapes found in nature, a specific 3D terrain model such as Uleung Island could not be formulated by statistical fractals easily owing to the random effects. However, by locating the midpoints on the edges and the surface of a specific terrain such as Uleung Island, a similar shape of the terrain model can be simulated. This paper shows the way of simulating 3D Uleung Island terrain model by the statistical fractals wherein the subdivision algorithm is used.

  • PDF

A Study on Modification of Geographical Features Affecting Onset of Sea Breeze (지형적 특징이 해풍시작에 미치는 영향에 대한 연구)

  • 정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.757-772
    • /
    • 2003
  • We simulate the geographical effects on the onset time of sea breeze at Suyoung and Haeundae districts by using the LCM (Local Circulation Model). The following can be found out from the numerical simulation on Case I (real terrain) which considered the real geography of Busan metropolitan area. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. To find out more about the effects of terrain and geography on the onset time of sea breeze, the results of numerical simulation of virtual geography are as follows. In Case II (flat terrain), to find out how the terrain slope affects the onset of sea breeze, flat land and the ocean was considered. As a result, convergence of nighttime air mass at a Suyoung area and nighttime strong wind speed phenomenon was not shown. In Case III (modified flat terrain), to find out the effects of the irregularity of coastline affecting the onset of sea breeze, numerical simulation was carried out by simplifying the complex coastline into segments of straight coastline. So land breeze system and changing process of sea breeze after sunrise at Suyoung and Haeundae was simulated almost in a similar manner. Through this we could find the effects of coastal irregularities on onset of sea breeze.

Field measurements of wind characteristics over hilly terrain within surface layer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.541-563
    • /
    • 2014
  • This paper investigates the topographic effects on wind characteristics over hilly terrain, based on wind data recorded at a number of meteorological stations in or near complex terrain. The multiply data sources allow a more detailed investigation of the flow field than is normally possible. Vertical profiles of mean and turbulent wind components from a Sodar profiler were presented and then modeled as functions of height and wind speed. The correlations between longitudinal and vertical wind components were discussed. The phenomena of flow separation and generation of vortices were observed. The distance-dependence of the topographic effects on gust factors was revealed subsequently. Furthermore, the canyon effect was identified and discussed based on the observations of wind at a saddle point between two mountain peaks. This study aims to further understanding of the characteristics of surface wind over rugged terrain. The presented results are expected to be useful for structural design, prevention of pollutant dispersion, and validation of CFD (computational fluid dynamics) models or techniques over complex terrains.

A Neighboring Area Search Algorithm for Terrain Following (Terrain Following을 위한 인접지역 탐색 알고리즘)

  • Kim, Jong-Hyuk;Choy, Yoon-Chul;Koh, Kyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.499-506
    • /
    • 2001
  • Terrain Following means that a mobile object, such a user's avatar, must follow terrain, remaining in contact with the ground at all times in virtual environments. This makes a virtual environment have the effects of gravity. Terrain Following is often done using collision detection: however this is inefficient, because general collision detection solves a problem that is inherently more complex than merely determining terrain contact points. Many virtual environments avoid the expense by utilizing a flat terrain with a constant altitude everywhere. This makes a terrain following trivial, but lacks realism. This paper provides as algorithm and a data structure for a terrain following using a neighboring area search as a way to search neighboring polygons. Because this algorithm uses a pre-processing step that stores the terrain polygons for calculating, it results in reducing overheads to workstations that is used to construct and maintain a virtual environment. Consequently, workstation can be used to apply not only a terrain following but also other things.

  • PDF

Comparison of Complex Terrain Effects in the Air Dispersion Modeling at the Poryong Power Plant Site (보령화력 지역의 복잡지형이 대기확산 모델링에 미치는 영향 비교)

  • 오현선;김영성;김진영;문길주;홍욱희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.427-437
    • /
    • 1997
  • Complex terrain which is rather typical topographic character in Korea would greatly influence the dispersion of air pollutant. In this study, we investigated how the complex terrain in the vicinity of the coal-fired plant affects the air dispersion modeling results by using several US EPA models: SCREEN, CTSCREEN, ISCLT3, ISCST3, and RTDM. Screening analysis was followed by long-term analysis, and the plume movement over the terrain was precisely tracked for selected cases. Screening analysis revealed that the highest concentration of sulfur dioxide occurs at the downwind distance of 1.3 km under the unstable conditions with weak winds. However, this highest level of $SO_2$ could be raised by 4 times even in the presence of a hill of 170 m at a distance of 2 to 3 km. Seasonal and annual average concentrations predicted with the ISCLT3, ISCST3, and RTDM models showed a rapid incrase of $SO_2$ levels in front of the high mountains which are located more than 15 km away fromt the source. The highest concentrations predicted with ISCST3 were significantly higher than those with ISCLT3 and RTDM mainly because ISCST3 chooses simple-terrain model calculations for receptors between stack height and plume height. Although the highest levels under the stable conditions were usually found in the areas beyond 15 km or more, their absolute values were not so high due to enough dispersion effects between the source and the receptors.

  • PDF

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

Numerical Simulations of Local Wind Field at the Naro Space Center by MUKLIMO with Terrain and Surface Effects (지형과 지표효과를 고려한 나로 우주센터의 국지규모 바람장 수치모의)

  • Yoon, Ji-Won;Min, Kyung-Duk
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.784-798
    • /
    • 2004
  • Microscale wind fields were simulated by MUKLIMO at the Naro Space Center, where complicated mountainous terrain and trees exist. In order to test the model's sensitivity with the effects of terrain and trees, experimental simulations were conducted under the various initial conditions. The experiments showed that the effects of trees were more significant on flat surfaces than on mountain cliffs. Based on the results, an actual 10 m level microscale wind field was simulated at the Naro Space Center, which has complicated mountainous terrain. Simulations of wind fields before and after the construction of the launching site were also conducted. It was found that MUKLIMO was of the mesoscale wind fields at the Naro Space Center.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.