• Title/Summary/Keyword: terrain classification method

Search Result 42, Processing Time 0.027 seconds

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

A Study on the Application of Combined Interpolation and Terrain Classification in Digital Terrain Model (수치지형모형에 있어 지형의 분석과 조합보관법의 적용에 관한 연구)

  • Yeu, Bock-Mo;Park, Woon-Yong;Kwon, Hyon;Mun, Du-Yeoul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 1990
  • In this study, terrain classification was done by using the quantitative classification parameter and suitable interpolation method was applied to improve the accuracy of digital terrain models and to increase its practical applications. A study area was classified into three groups using the quantitative classification parameters and an interpolation equation suitable for each group was used for economical application of the interpolation method. The accuracy of digital terrain models was improved in case of large grid intervals by applying combined interpolation method suitable for each terrain group.

  • PDF

A Method for Terrain Cover Classification Using DCT Features (DCT 특징을 이용한 지표면 분류 기법)

  • Lee, Seung-Youn;Kwak, Dong-Min;Sung, Gi-Yeul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.683-688
    • /
    • 2010
  • The ability to navigate autonomously in off-road terrain is the most critical technology needed for Unmanned Ground Vehicles(UGV). In this paper, we present a method for vision-based terrain cover classification using DCT features. To classify the terrain, we acquire image from a CCD sensor, then the image is divided into fixed size of blocks. And each block transformed into DCT image then extracts features which reflect frequency band characteristics. Neural network classifier is used to classify the features. The proposed method is validated and verified through many experiments and we compare it with wavelet feature based method. The results show that the proposed method is more efficiently classify the terrain-cover than wavelet feature based one.

A Study on the Application of Interpolation and Terrain Classification for Accuracy Improvement of Digital Elevation Model (수지표고지형의 정확도 향상을 위한 지형의 분류와 보간법의 상용에 관한 연구)

  • 문두열
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.64-79
    • /
    • 1994
  • In this study, terrain classification, which was done by using the quantitative classification parameters and suitable interpolation method was applied to improve the accuracy of digital elevation models, and to increase its practical use of aerial photogrammetry. A terrain area was classified into three groups using the quantitative classification parameters to the ratio of horizontal, inclined area, magnitude of harmonic vectors, deviation of vector, the number of breakline and proposed the suitable interpolation. Also, the accuracy of digital elevation models was improved in case of large grid intervals by applying combined interpolation suitable for each terrain group. As a result of this study, I have an algorithm to perform the classification of the topography in the area of interest objectively and decided optimal data interpolation scheme for given topography.

  • PDF

Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles (무인차량 적용을 위한 영상 기반의 지형 분류 기법)

  • Sung, Gi-Yeul;Kwak, Dong-Min;Lee, Seung-Youn;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Classification of the vegetated terrain using polarimetric SAR processing techniques

  • Park Sang-Eun;Moon Wooil M
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • Classification of Earth natural components within a full polarimetric SAR image is one of the most important applications of radar polarimetry in remote sensing. In this paper, the unsupervised classification algorithms based on the combined use of the polarimetric processing technique such as the target decomposition and statistical complex Wishart classification method are evaluated and applied to vegetated terrain in Jeju volcanic island.

  • PDF

Parameter Analysis Method for Terrain Classification of the Legged Robots (보행로봇의 노면 분류를 위한 파라미터 분석 방법)

  • Ko, Kwang-Jin;Kim, Ki-Sung;Kim, Wan-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Terrain recognition ability is crucial to the performance of legged robots in an outdoor environment. For instance, a robot will not easily walk and it will tumble or deviate from its path if there is no information on whether the walking surface is flat, rugged, tough, and slippery. In this study, the ground surface recognition ability of robots is discussed, and to enable walking robots to recognize the surface state and changes, a central moment method was used. The values of the sensor signals (load cell) of robots while walking were detected in the supported section and were analyzed according to signal variance, skewness, and kurtosis. Based on the results of such analysis, the surface state was detected and classified.