• Title/Summary/Keyword: terrain change

Search Result 206, Processing Time 0.024 seconds

Comparisons of Single Photo Resection Algorithms for the Determination of Exterior Orientation Parameters (단사진의 외부표정요소 결정을 위한 후방교회법 알고리즘의 비교)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.305-315
    • /
    • 2020
  • The purpose of this study is to compare algorithms of single photo resection, which determines the exterior orientation parameters used in fields such as photogrammetry, computer vision, robotics, etc. To this end, the algorithms were compared by generating experimental data by simulating terrain based on a camera used in aerial and close-range photogrammetry. Through experiments on aerial photographic camera that was taken almost vertically, it was possible to determine the exterior orientation parameters using three ground control points, but the Procrustes algorithm was sensitive to the configuration of the ground control points. Even in experiments with a close-range amateur camera where the attitude angles of the camera change significantly, the algorithm was sensitive to the configuration of the ground control points, and the other algorithms required at least six ground control points. Through experiments with two types of cameras, it was found that cosine lawbased spatial resection shows performance similar to that of a traditional photogrammetry algorithm because the number of iterations is short and no explicit initial values are required.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

Adaptive Multi-routing Protocol for a High Mobility MANET (변동성이 높은 이동 애드 혹 네트워크를 위한 적응적 다중 라우팅 프로토콜 적용 기법)

  • Deepak, G.C.;Heo, Ung;Choi, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • When there is uncertainty in topological rate of change, motility model and terrain condition, the performance severely degrades in MANET. The concept of transition of routing protocol on the fly according to the network parameters such as coverage, connectivity and mobility etc. may counterbalance the problems stated above. The mathematical modeling of feedback parameters has been derived, and the architecture for the multi-routing protocol system providing an adaptation from one routing protocol to another is also investigated. This paper is extensively devoted on the analysis of mobility, connectivity and their effects on the network and finally transition into another routing protocol according to them.

Sea Breeze Criterion and the Climatological Characteristics of the Short-time Sea Breeze in Gangneung Coastal Area (강릉 연안지역 해풍의 선정기준과 단 시간 해풍의 기후학적 특성)

  • Park, Jae-Hong;Jung, Woo-Sik;Leem, Heon-Ho;Lee, Hwa-Woon
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.436-441
    • /
    • 2002
  • This study is concerned with the sea breeze criterion and climatological characteristics of the short-time sea breeze in the Gangneung coastal area. The sea breeze criteria in this area are listed here. First, the fact of the sea breeze blowing was considered to be a change of wind direction from land to sea and vice versa without terrain effect like easterly wind. Second, the sea breeze of which continuous time 1-hour or 2-hour was selected. Then the climatological characteristics of the short-time sea breeze were analyzed using the meterological data from a 10-year(1988${\sim}$1997) period. The climatological characteristics which were analyzed for the short-time sea breeze consist of the frequency, onset time, wind direction speed and temperature. Finally, this study will be helpful in meteorological application through the climatological characteristics of sea breeze along the east coast as well as Gangneung Airport.

Spectral Signatures of Tombs and their Classification (묘지의 분광적 특성과 통계적 분류)

  • Eunmi Change;Kyeong Park;Minho Kim
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.283-296
    • /
    • 2004
  • More than 0.5 percent of land in Korea is used for cemetery and the rate is growing in spite of the increase in cremation these days. The systematic management of tombs may be possible through the ‘Feature Extraction’ method which is applied to the high-resolution satellite imagery. For this reason, this research focused on finding out the radiometric characteristics of tombs and the classification of them. An IKONOS image of northwest areas of Seoul with 8km x 10km dimension was analyzed. After sampling 24 tombs in the study area, the statistical radiometric characteristics of tombs are analyzed. And tombs were classified based on the criteria such as landscape, NDVI, and cluster analysis. In addition, it was investigated if the aspect or slope of the terrain influenced to the classification of tombs. As a result of this research, authors find that there is similarity between the classification tv NDVI and the classification through cluster analysis. And aspect or slope didn't have much influence on the classification of tombs.

A New Wheel Design for Miniaturized Terrain Adaptive Robot (험지 주행용 소형 로봇을 위한 바퀴의 설계)

  • Kim, Yoo Seok;Kim, Haan;Jung, Gwang Pil;Kim, Seong Han;Cho, Kyu Jin;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • Small mobile robots which use round wheels are suitable for driving on a flat surface, but it cannot climb the obstacle whose height is greater than the radius of wheels. As an alternative, legged-wheels have been proposed by many researchers due to its better climbing performance. However, driving and climbing performances have a trade-off relationship so that their driving performance should be sacrificed. In this study, in order to achieve both driving and climbing performances, a new transformable wheel was developed. The developed transformable wheel can have a round shape on a flat surface and change its shape into legged-wheel when it makes a contact with an obstacle. For design of the transformable wheel, the performance of legged-wheel was analyzed with respect to the number and curvature of the leg, and then the new transformable wheel was designed based on the analysis. Contrary to the existing transformable wheels that contain additional actuators for the transformation, the developed transformable wheel can be unfolded without any additional actuator. In this study, in order to validate the transformable wheel, a simple robot platform was fabricated. Consequently, it climbed the obstacle whose height is 2.6 times greater than the wheel radius.

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Evaluation of Soil Compaction Using Gravity Field Interpretation and UAV-based Remote Sensing Information (중력 데이터 해석과 드론원격정보를 이용한 지반의 다짐도 평가)

  • Kim, Sung-Wook;Choi, Sungchan;Choi, Eun-Kyoung;Lee, Yeong-Jae;Go, Daehong;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.283-293
    • /
    • 2021
  • The homogeneity of the compacted ground was analyzed using drone-based remote terrain and gravity field data. Among the topographic elements calculated by the hydrological algorithm, the topographic curvature effectively showed the shape of the surface that occurred during the compaction process, and the non-uniformly compacted area could be identified. The appropriate resolution of the digital topography requires a precision of about 10 cm. Gravity field Interpretation was performed to analyze the spatial density change of the compacted ground. In the distribution of residual bouguer gravity anomaly, the non-homogeneously compacted area showed a different magnitude of gravity than the surrounding area, and the difference in compaction was identified through gravity-density modeling. From the results, it is expected that the topographic element and gravitational field analysis method can be used to evaluate the homogeneity of the compacted ground.

Decision-Making System of UAV for ISR Mission Level Autonomy (감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템)

  • Uhm, Taewon;Lee, Jang-Woo;Kim, Gyeong-Tae;Yang, Seung-Gu;Kim, Joo-Young;Kim, Jae-Kyung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.829-839
    • /
    • 2021
  • Autonomous system for UAVs has a capability to decide an appropriate current action to achieve the goal based on the ultimate mission goal, context of mission, and the current state of the UAV. We propose a decision-making system that has an ability to operate ISR mission autonomously under the realistic limitation such as low altitude operation with high risk of terrain collision, a set of way points without change of visit sequence not allowed, and position uncertainties of the objects for the mission. The proposed decision-making system is loaded to a Hardware-In-the-loop Simulation environment, then tested and verified using three representative scenarios with a realistic mission environment. The flight trajectories of the UAV and selected actions via the proposed decision-making system are presented as the simulation results with discussion.