• Title/Summary/Keyword: terpenoid

Search Result 100, Processing Time 0.026 seconds

Effect of various chromatographic terpenoid fractions of Luffa cylindrica seeds on in-vitro antimicrobial studies

  • Nagarajan, K.;Saxena, Pallavi;Mazumder, Avijit;Ghosh, L.K.;Devi, G. Uma
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • The objective of the present investigation is to evaluate the antimicrobial potency of the terpenoid fractions isolated from Luffa cylindrica seeds against various pathogenic microbes. The seeds were powdered and extracted with methanol in soxhlet appratus based on phytochemical screening. Three terpenoid components were isolated by column chromatography and identified by thin layer chromatography and chemical analysis which were designated as ${LCSF_4}^*$, ${LCSF_6}^*$ & ${LCSF_8}^*$ respectively. Disc diffusion method was employed to determine the antimicrobial effectiveness of test compounds I, II and III $({LCSF_4}^*,\;{LCSF_6}^*\;&\;{LCSF_8}^*)$ against 6 microbial species viz., Staphylococcus (S.) aureus, Bacillus (B.) subtilis, Escherichia (E.) coli, Pseudomonas (P.) aeruginosa, Candida (C.) albicans and Aspergillus niger. The disc was saturated with $100{\mu}l$ of each compound, allowed to dry and introduced on the upper layer of seeded agar plate. The plates were incubated overnight at $37^{\circ}C$. Microbial growth was determined by measuring the zonal inhibition diameters. Compound I showed maximum potency against gram positive S. aureus (21 mm) in comparison with standard ciprofloxacin (38 mm), whereas the same compound was completely devoid of activity against both the fungi tested. Compound II was found to be highly sensitive against both the gram negative E. coli (20 mm) and P. aeruginosa (22 mm). Compound II was found to exhibit maximum potency against the fungi C. albicans (15 mm) and A. niger (20 mm). Compound III was found to be very effective against both the gram positive S. aureus (20 mm) and B. subtilis (15 mm) respectively.

Isolation and Identification of Terpenoids from the Leaf of Chrysanthemum coronarium L. (쑥갓 잎에서 터펜노이드계 화합물의 분리 및 동정)

  • Ha, Tae-Joung;Lee, Byong-Won;Lee, Jong-Rok;Lee, Jun;Hwang, Sun-Woo;Cho, Dong-Young;Nam, Sang-Hae;Yang, Min-Suk;Lee, Kyung-Dong
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • Three terpenoids were isolated from the leaves of Chrysanthemum coronarium L. by silica gel chromatography and recrystalization. The structure of compounds 1, 2, and 3, using various spectroscopic data, were identified as to be terpenoid derivatives of dihydrotulipinolide, loliolide, and $5{\alpha},8{\alpha}-peroxyergosterol$, respectively. The presence of these 3 is the first time reported in this plant. The cytotoxic activity of $5{\alpha},8{\alpha}-peroxyergosterol$ showed strong activities against human cancer cell lines such as A549, PC-3, and HCT 116.

Antibiotics from Mushrooms (버섯의 항생물질(抗生物質))

  • Hwang, Byung-Ho
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.83-100
    • /
    • 2006
  • Antibiotics which produced by mushrooms discovered for last 40 years were described. Any antibiotic has not been used as infectious disease remudy but will be used as physiological active substance in near future. The antibiotic of mushrooms have not been published much in papers and do not have various finds of structures, compared to those of Streptomyces. Triple bond having compounds, terpenoid compounds aromatic compounds and some other compound have been known. These compounds are not dissolved well in water and mainly fat-soluble, except for cordycepin. Also, they are generally neutral, and some of them are acidic and almost none of them are basic compounds. However, acetylene and terpenoid compounds are the characteristic compounds of mushroom, and are not found in other microorganisms and plants. Especially, there are various terpenoid compounds in mushrooms. These metabolites of mushrooms were not used as antibiotic, but are interested as physiological active substance, such as enzyme inhibitor and immunomodulator. To promote studying on the antibiotics of mushroom, new screening methods must be developed, because strain belonged to the different genus produces different antibiotics, even though mushrooms belonged to the same genus and species. It is also known that mushrooms collected in different areas produce different antibiotics. Now, it is difficult to separate each pure compound from mushroom. It is important to find mushrooms which is impossible to cultivate artificially, or grow in the back land where is difficult to collect. Thousands of mushrooms grow on earth now, so that which species will be screened if not known. The biochemical and mycological study for usability of the metabolites of mushrooms is thought, as one of the important research areas, must be performed.

  • PDF

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.

Effects of Culture Mechanism of Cinnamomum kanehirae and C. camphora on the Expression of Genes Related to Terpene Biosynthesis in Antrodia cinnamomea

  • Zhang, Zhang;Wang, Yi;Yuan, Xiao-Long;Luo, Ya-Na;Luo, Ma-Niya;Zheng, Yuan
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.121-131
    • /
    • 2022
  • The rare edible and medicinal fungus Antrodia cinnamomea has a substantial potential for development. In this study, Illumina HiSeq 2000 was used to sequence its transcriptome. The results were assembled de novo, and 66,589 unigenes with an N50 of 4413 bp were obtained. Compared with public databases, 6,061, 3,257, and 2,807 unigenes were annotated to the Non-Redundant, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The genes related to terpene biosynthesis in the mycelia of A. cinnamomea were analyzed, and acetyl CoA synthase (ACS2 and ACS4), hydroxymethylglutaryl CoA reductase (HMGR), farnesyl transferase (FTase), and squalene synthase (SQS) were found to be upregulated in XZJ (twig of C. camphora) and NZJ (twig of C. kanehirae). Moreover, ACS5 and 2,3-oxidized squalene cyclase (OCS) were highly expressed in NZJ, while heme IX farnesyl transferase (IX-FIT) and ACS3 were significantly expressed in XZJ. The differential expression of ACS1, ACS2, HMGR, IX-FIT, SQS, and OCS was confirmed by real-time quantitative reverse transcription PCR. This study provides a new concept for the additional exploration of the molecular regulatory mechanism of terpenoid biosynthesis and data for the biotechnology of terpenoid production.

Sterols and terpenoids from phytolacca esculenta

  • Woo, Won-Sick;Kang, Sam-Sik
    • YAKHAK HOEJI
    • /
    • v.17 no.3
    • /
    • pp.152-160
    • /
    • 1973
  • Phytolaccagenin, as a minor free terpenoid, was isolated from the roots of phytolacca esculenta van Houtte. A mixture of sterols was also isolated and identified as ${\alpha}$-spinasterol and ${\delta}^7$-stigmastenol, which never seemed to have been found in phytolaccaceae.

  • PDF

A Comparison of Volatile Flavor Characteristics of Chwi-namuls by Terpenoid Analysis (Terpenoid 분석을 통한 취나물류의 향기지표물질 비교)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.930-940
    • /
    • 2012
  • A comparison of essential oils composition of Aster tataricus L. (gaemichwi), Ligularia fischeri (gomchwi), Solidago virga-aurea var. asiatica Nakai (miyeokchwi), and Aster scaber (chamchwi) was performed by gas chromatography and mass spectrometry for the identification of volatile flavor characteristics in chwi-namuls. The essential oils were extracted by the hydro distillation extraction method. One hundred volatile flavor components were identified from gaemichwi essential oil. ${\alpha}$-Pinene (11.5%) was the most abundant compound, followed by myrcene (8.9%) and ${\beta}$-pinene (7.5%). Ninety-one volatile flavor components were identified from the essential oil of gomchwi. Aromadendrene (14.8%) was the most abundant component, followed by ${\beta}$-caryophyllene (7.6%) and 1-methyl-4-(1-methylethylidene)-cyclohexene (7.3%). Ninety-five volatile flavor constituents were detected in the essential oil of miyeokchwi, moreover, spathulenol (15.7%) was the most abundant component. Ninety-six volatile flavor constituents were detected in the essential oil of chamchwi. Epi-bicyclosesquiphellandrene (21.9%) was the most abundant component, followed by ${\beta}$-caryophyllene (9.5%) and ${\delta}$-terpinene (8.9%). The essential oil composition of gaemichwi was characterized by a higher contents of pinenes. The essential oil composition of gomchwi can be easily distinguished by the percentage of aromadendrene. Spathulenol and epi-bicyclosesquiphellandrene were regarded as the characteristic odorants of miyeokchwi and chamchwi, respectively.