• Title/Summary/Keyword: ternary cement

Search Result 128, Processing Time 0.027 seconds

Strength improvement and micro analysis of limestone-slag cement : role of aluminum sulfate (석회석슬래그 시멘트의 강도향상 및 미세분석 : 황산알루미늄의 역할)

  • Wang, Yi-Sheng;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.161-162
    • /
    • 2023
  • Limestone slag cement is a green and sustainable building material with huge market potential. However, its shortcoming of low early compressive strength needs to be improved. A method of using aluminum sulfate to improve the early strength of ternary mixed mortar was proposed, and its effect and optimal dosage were tested. Macroscopic properties such as mechanical properties and surface electrical resistivity were measured at different dosages (0%, 1%, 2%, 3%). The microstructure and products of the mixtures were tested in detail, including by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction. The results show aluminum sulfate enhances mechanical properties and significantly increases surface electrical resistivity. The 1% and 2% doses had no adverse effects on the 28-day mechanical properties, while the 3% dose reduced the 28-day strength. Considering the changes in mechanical properties and surface electrical resistivity, 1% aluminum sulfate is the optimal dosage.

  • PDF

Comparative Study on the Properties of Concrete Using Several Types of Cement (시멘트의 종류에 따른 콘크리트 특성비교 연구)

  • 송용순;강석화;한정호;구교준;김상철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.161-166
    • /
    • 1998
  • The main object of this study is to examine the basic properties of fresh concrete as well as hardened concrete using several types of cement such as ordinary portland cement, sulphate resisting portland cement, blast furnace slag cement, ternary blended cement. In addition, effects of each cement on the durability including drying shrinkage, freeze-thawing resistance, resistance of chloride ion penetration, carbonation of concrete were investigated. As the results of this study, it was proved that most of the properties of concrete using each cement were similar, but there were some differences in bleeding, setting time, resistance of chloride ion penetration and carbonation.

  • PDF

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Permeability and mechanical properties of binary and ternary cementitious mixtures

  • Sadrmomtazi, Ali;Tahmouresi, Behzad;Amooie, Morteza
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.423-436
    • /
    • 2017
  • Today, pozzolans are widely used in construction for various reasons such as technical and economic efficiency. In this research, in order to evaluate some of important properties of concrete, silica fume and fly ash have been used as a replacement for cement in different mass percentages. Concrete mixtures were made from a water-cement ratio of (0.45) and cured under similar conditions. The main focus of this study was to evaluate the permeability and mechanical properties of concrete made from binary and ternary cementitious mixtures of fly ash and silica fume. In this study permeability of concrete was studied by evaluating the sorptivity, water absorption, water penetration depth, electrical resistivity and rapid chloride permeability (RCP) tests. Mechanical properties of concrete were evaluated with compressive strength, splitting tensile strength and modulus of elasticity. Scanning electronic microscopy (SEM) was used to characterize the effects of silica fume and fly ash on the pore structure and morphology of concrete with cement based matrix. The results indicated that the incorporation of silica fume and fly ash increased the mechanical strength and improved the permeability of concrete.

Study on Low Heat Cements (저발열형 시멘트 개발에 관한 연구)

  • Choi, Jae-Woong;Ha, Jae-Dam;Kim, Dong-Seuk;Kim, Ki-Soo;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.46-51
    • /
    • 1999
  • Mass concrete structures have many critical points in service. The cracks caused by the heat of hydration is the most serious problem, so that many method ot control cracks(precooling, postcooling, etc) have been applied to construction. But cooling methods take high cost and many installation and limits of field. Therefore it is useful to use the low heat hydration cements for low cost. This paper describes the characteristics of a low heat cement mixing the ternary components of cement(portland cement, blast furnace slag, fly ash) recently developed for mass concrete, belite cement, low heat slag cement(belite base) and fly ash cement (belite base). The objective of this paper is to study on low heat cement about initial compressive strength and hydration heat.

  • PDF

Corrosion of Steel in Concrete Deteriorated by Freezing/Thawing and Carbonation (동결융해 및 중성화를 받은 콘크리트의 철근 부식 특성)

  • 정해문;김종우;이대근;최광일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.293-298
    • /
    • 1997
  • Corrosion of steel reinforcing in concrete deteriorated by freezing/thawing and carbonation was characterized. Concrete specimens were prepared using various kinds of cements such as ordinary portland cement (type I), low heat portland cement (type IV, belite rich cement), sulphate resistance portland cement (type V), blast furnace slag portland cement and ternary blended cement. Of various cements, type V and type IV with lower $C_3A$ content revealed better steel corrosion resistance after freezing/thawing and carbonation. $C_3A$ content in cement might affect freezing/thawing resistance in sea water.

  • PDF

The Effects of Self-Healing for Ternary Blended Cement in Tap-water and Sea-water (삼성분계 시멘트의 해수와 담수에서의 자기치유 효과)

  • Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.10-19
    • /
    • 2016
  • The objective of this study is to investigate the self-healing properties of ternary blended cement(TBC) paste made with OPC, GGBFS and FA. The influence of OPC-GGBFS-FA on the self-healing ability of ternary blended cement paste was researched by ultrasonic pulse velocity(UPV) measurement. The TBC paste with GGBFS-FA replacement ratios of 20%, 40% and 60% were prepared having a constant water-cementitious materials ratios os 0.5. The research focuses on behavior after 28days(after loading). Four-point bending tests are used to pre-cracked the prismatic specimens at 28days. For specimens (uncracked and cracked) submerged in tap-water and sea-water until 60days. According to the experimental results, the TBC paste system has self-healing ability increased when the fraction of GGBFS increased. Because GGBFS and FA continues to hydrate after 28days, it is likely that hydrated products from GGBFS and FA may modify microstructures, seal these cracks. From these results, it is clear that the crack in all samples experience self-healing and that this occurs mostly in the first 30days of submerging. Futhermore, most of the healing for both specimens of submerged in sea-water and tap-water occurred during the first 30days. Sea-water submerged specimens healed cracks as fast as those in tap-water. Differences in healing effects of submerged in sea-water and tap-water may be attributed to the presence of specific sea-water ions. Therefore, self-healing effects considered age-effects was more strong effect occurred mostly in the first 30days, and then gradually weaken.

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement (활성화된 삼성분계 고유동 모르타르의 기초특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Hyoung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.

The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

  • Yu, Myoung-Youl;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2012
  • In this research, the possible applicability of mixture blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to be an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.