• 제목/요약/키워드: terminal region

검색결과 611건 처리시간 0.025초

Nuclear localization of Obox4 is dependent on its homeobox domain

  • Park, Geon Tae;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Objective: Oocyte-specific homeobox 4 (Obox4) is preferentially expressed in oocytes and plays an important role in the completion of meiosis of oocytes. However, the Obox4 expression pattern has not been reported yet. In this study, we investigated the subcellular localization of Obox4 using a green fluorescent protein (GFP) fusion expression system. Methods: Three regions of Obox4 were divided and fused to the GFP expression vector. The partly deleted homeodomain (HD) regions of Obox4 were also fused to the GFP expression vector. The recombinant vectors were transfected into HEK-293T cells plated onto coated glass coverslips. The transfected cells were stained with 4',6-diamidino-2-phenylindol and photographed using a fluorescence microscope. Results: Mutants containing the HD region as well as full-length Obox4 were clearly localized to the nucleus. In contrast, the other mutants of either the N-terminal or C-terminal region without HD had impaired nuclear localization. We also found that the N-terminal and C-terminal of the Obox HD contributed to nuclear localization and the entire HD was necessary for nuclear localization of Obox4. Conclusion: Based on the results of the present study, we demonstrated that the intact HD region of Obox4 is responsible for the nuclear localization of Obox4 protein in cells.

Functional Dissection of Sigma-like Domain in Antibiotic Regulatory Gene, afsR2 in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1477-1480
    • /
    • 2006
  • The 63-amino-acid-encoding afsR2 is a global antibiotics-stimulating regulatory gene identified from the chromosome of Streptomyces lividans. To dissect a putative functional domain in afsR2, several afsR2-derivative deletion constructs were generated and screened for the loss of actinorhodin-stimulating capability. The afsR2-derivative construct missing a 50-bp C-terminal region significantly lost its actinorhodin-stimulating capability in S. lividans. In addition, site-directed mutagenesis on amino acid positions of #57-#61 in a 50-bp C-terminal region, some of which are conserved among known Sigma 70 family proteins, significantly changed the AfsR2's activity. These results imply that the C-terminal region of AfsR2 is functionally important for antibiotics-stimulating capability and the regulatory mechanism might be somehow related to the sigma-like domain present in the C-terminal of AfsR2.

The Specific Binding Mechanism of the Antimicrobial Peptide CopA3 to Caspases

  • Ho Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.243-249
    • /
    • 2023
  • We recently found that the insect-derived antimicrobial peptide CopA3 (LLCIALRKK) directly binds to and inhibits the proteolytic activation of caspases, which play essential roles in apoptotic processes. However, the mechanism of CopA3 binding to caspases remained unknown. Here, using recombinant GST-caspase-3 and -6 proteins, we investigated the mechanism by which CopA3 binds to caspases. We showed that replacement of cysteine in CopA3 with alanine caused a marked loss in its binding activity towards caspase-3 and -6. Exposure to DTT, a reducing agent, also diminished their interaction, suggesting that this cysteine plays an essential role in caspase binding. Experiments using deletion mutants of CopA3 showed that the last N-terminal leucine residue of CopA3 peptide is required for binding of CopA3 to caspases, and that C-terminal lysine and arginine residues also contribute to their interaction. These conclusions are supported by binding experiments employing direct addition of CopA3 deletion mutants to human colonocyte (HT29) extracts containing endogenous caspase-3 and -6 proteins. In summary, binding of CopA3 to caspases is dependent on a cysteine in the intermediate region of the CopA3 peptide and a leucine in the N-terminal region, but that both an arginine and two adjacent lysines in the C-terminal region of CopA3 also contribute. Collectively, these results provide insight into the interaction mechanism and the high selectivity of CopA3 for caspases.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Backbone assignment of the intrinsically disordered N-terminal region of Bloom syndrome protein

  • Min June Yang;Chin-Ju Park
    • 한국자기공명학회논문지
    • /
    • 제27권3호
    • /
    • pp.17-22
    • /
    • 2023
  • Bloom syndrome protein (BLM) is a pivotal RecQ helicase necessary for genetic stability through DNA repair processes. Our investigation focuses on the N-terminal region of BLM, which has been considered as an intrinsically disordered region (IDR). This IDR plays a critical role in DNA metabolism by interacting with other proteins. In this study, we performed triple resonance experiments of BLM220-300 and presented the backbone chemical shifts. The secondary structure prediction based on chemical shifts of the backbone atoms shows the region is disordered. Our data could help further interaction studies between BLM220-300 and its binding partners using NMR.

종양 억제 인자, Merlin의 FERM 도메인과 C-말단 도메인간의 결합 (Interaction of FERM Domain of Tumor Suppressor, Merlin to its C-terminal Domain.)

  • 강범식;오정일
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1303-1307
    • /
    • 2007
  • A tumor suppressor, merlin is a member of ERM family proteins. It consists of N-terminal FERM domain, ${\alpha}-helical$ region, and C-terminal domain. Alternative splicing of merlin's mRNA generates two isotypes of merlin. Isotype I, which has exon17 at the C-terminus instead of exon16 in isotype II, is known to have tumor suppressor activity. Like other ERM proteins, the C-terminal domain of merlin isotype I interacts to its FERM domain. That of isotype II, however, was reported not to bind FERM domain despite the large common part of C-terminal domain, which possibly binds FERM domain. Here, we show the binding of FERM domain to both C-terminal domains of merlin's two isotypes by isothermal titration calorimetry. These results support that merlin isotype II also can form a closed conformation or a multimer by intramolecular or intermolecular interactions using their FERM domain and C-terminal domain.

Partial Characterization of Soybean cDNA Encoding CTP: Phosphocholine Cytidylyltransferase

  • Sung Ho Cho
    • Journal of Plant Biology
    • /
    • 제38권4호
    • /
    • pp.359-364
    • /
    • 1995
  • As the first step to elucidate the relationship between the structure and function of CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) in plants, the partial nucleotide sequence of soybean cytidylyltransferase cDNA was determined using a polymerase chain reaction (PCR). Degenerate oligonucleotide primers were synthesized from the conserved region revealed from the rat and yeast cytidylyltransferase DNA sequences. The catalytic domain region showed 78 and 76% homology with the rat and yeast amino acid sequences, respectivly. The hydropathy profile indicated that the C-terminal non-catalytic portion of the protein was very hydrophilic, and in the region between the catalytic domain and the C-terminal region, there was a large amphipathic $\alpha$-helical domain that was believed to bind the membrane surface in the active formation. There are 7 potential sites for phosphorylation by protein kinase C and 4 potential sites for phosphorylation by Ca2+/calmodulin kinase within the determined sequence.

  • PDF

Variation of Potato virus Y Isolated from Potato, Tobacco, Pea and Weeds in Korea on the C-terminal Region of Coat Protein Gene and 3'Non-translated Region

  • Yun, W.S.;Jung, H.W.;Oh, M.H.;Hahm, Y.I.;Kim, K.H.
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.130-137
    • /
    • 2002
  • Potato virus Y (PVY) is one of the most important viruses in many field crops in Korea. In this study, 31 PVY isolates were isolated from infected potato (Solanum tuberosum), tobacco (Nicotiana tabacum), pea (Pisum sativum), and weeds (Veronica persica, Lamium amplexicause and Capsella bursa-pastoris) showing different mosaic symptoms in Jeonbuk, Chungnam, Gangwon, and Gyeongbuk areas in Korea. The 640 nucleotide region containing the C-terminal portion of coat protein (CP) gene and 3'non-translated region (NTR) was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using PVY-specific oligonucleotide primers. Sequence analyses of the amplified DNA fragments showed that the C-terminal portion of CP gene was not significantly different from that of previously reported PVY strains from potato (PVY-OK and -T) and tobacco (PVY-VN) in Korea. Homologies of the deduced CP amino acid sequences were 93.3-99.0% to corresponding regions of the other PVY strains including PV $Y^{N}$, PV $Y^{o}$ , PV $Y^{OK}$ , PV $Y^{T}$ , and PV $Y^{VN}$ . In contrast the sequences located at the 3'-NTR showed more diverse sequence homologies (76.4-99.7%). These results indicate that the C-terminal portion of the CP gene was relatively conserved while sequences at the 3'NTR were more diverse and variable over the host species and the regions where they were isolated.e isolated.