• 제목/요약/키워드: tensionless foundation

검색결과 13건 처리시간 0.022초

Elastic Analysis of Plates Resting on Elastic Half-Space Considering the Local Segregation Between Plate and Foundation

  • Jinhwan-Cheung;Cho, Hyun-Yung
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.38-43
    • /
    • 1993
  • It is one of classical problems in the elastic theory to analyze contact stresses between elastic bodies. Concrete pavements under traffic wheel loads can be considered as one of these typical problems. In this paper, an elastic plate resting on tensionless elastic half-space is analyzed by finite element method. The Boussinesq's solution of elastic half-space is used to evaluate the flexibility of foundation. One of the principal difficulties in solving the local seperation phenomena between plate and foundation is that the geometry of the system is unknown. To obtain the boundary of contact area, the flexibility matrix of foundation is modified after each cycle of analysis iteratively. Some numerical examples are presented by using these method.

  • PDF

판과 지반의 분리를 고려한 반무한 탄성지반상에 놓인 사각형 평판의 접촉응력 해석 (The Analysis of Contact Pressure of Plate on Elastic Half-Space Considering Local Separation between Plate and Half-Space)

  • 조현영;정진환;김성철;김호진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.73-79
    • /
    • 1997
  • It is one of classical problems in the elastic theory to analyze contact stresses between elastic bodies. Concrete pavements under traffic wheel loads can be considered as one of these typical Problems. In the paper, Mindlin plate theory is used to consider the transverse shear effect, 8-node isoparametric plate bending element is adopted in this study, and an elastic plate resting on tensionless elastic half-space is analyzed by finite element method. The Boussineq's solution of elastic half-space is used to evaluate the flexibility of foundation. To obtain the boundary of contact area, the flexibility matrix of foundation is modified after each cycle of analysis iteratively. A Numerical example is presented by using these method.

  • PDF

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.