• Title/Summary/Keyword: tension stress

Search Result 1,298, Processing Time 0.024 seconds

Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress (인장 굽힘피로를 받는 부재의 피로수명과 균열관통)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF

Effects of Aromatherapy on Headache, Stress and Immune Response of Students with Tension-Type Headache (향요법이 대학생의 긴장형 두통, 스트레스 및 면역반응에 미치는 효과)

  • Han, Seon-Hee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.14 no.2
    • /
    • pp.273-281
    • /
    • 2008
  • Purpose: This study was performed to investigate the effects of aromatherapy on headache, stress and immune response of students with tension-type headache. Method: This study employed a two-group pre-post test study design. Data was collected from 44 subjects. Twenty-two subjects were assigned to the experimental group and received aromatherapy massage every other day for 3 weeks, but the other 22 subjects were in the control group and did not receive any intervention. Experiment had been conducted from Apr. 9 through Aug. 25, 2001 and intensity of headache, stress response (serum cortisol, life stress) and immune response(T-cell and natural killer cell ratio) were measured in the course of aromatherapy for both experimental group and control group. Data were analyzed by using $X^2$-test, t-test, Paired t-test and repeated measures ANOVA. Result: Headache scores, serum cortisol levels and life stress scores were significantly decreased in the experimental group after treatment compared to the control group. Conclusion: These findings is suggested that the aromatherapy could be an effective nursing intervention in relaxing and relieving the pain caused by tension-type headache for students.

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects (면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발)

  • Choung, Joonmo;Han, SeungOh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at.%Ni-2.0at.%Cu Alloys in Tension and Compression Condition (Ti-42.5at.%Ni-2.0at.%Cu합금의 인장 및 압축에 따른 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Cho, Jae-Whan;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.1-5
    • /
    • 2009
  • NiTiCu alloys can produce a large force per unit volume and operate with a simple mechanism. For this reasons, it has been widely studied for application as a micro actuator. So in this study, one-way and two way shape memory effects of Ti-42.5at%Ni-2.0at%Cu alloys are studied. In the case of one-way shape memory effects, shape memory recoverable stress and strain of this alloys were measured by means of tension and compression tests under constant temperature. The strains by tension and compression stress were perfectly recovered by heating at any testing conditions also shape memory recoverable stress increased to 116 MPa in tension tests and to 260 MPa in compression tests. In the case of two-way shape memory effects, transformation temperatures from thermal cycling under constant uniaxial applied tension and compression loads linearly increased by increasing external loads and their maximum recoverable strain is 3.8% at 100MPa tensile condition and 2.2% at 125 MPa compression condition.

Determination of double-K fracture parameters of concrete using split-tension cube test

  • Kumar, Shailendra;Pandey, S.R.
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.81-97
    • /
    • 2012
  • This paper presents development of double-K fracture model for the split-tension cube specimen for determining the unstable fracture toughness and initial cracking toughness of concrete. There are some advantages of using of split-tension cube test like compactness and lightness over the existing specimen geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen. The cohesive toughness of the material is determined using weight function having four terms for the split-tension cube specimen. Some empirical relations are also suggested for determining geometrical factors in order to calculate stress intensity factor and crack mouth opening displacement for the same specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is investigated. The input data required for determining double-K fracture parameters for both the specimen geometries are obtained using well known version of the Fictitious Crack Model.

Influence of Concrete Strength on Tension Stiffening (콘크리트강도가 인장증강에 미치는 영향에 관한 연구)

  • Yum, Hwan-Seok;Yun, Sung-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • This paper describes the results obtained from 11 direct tension tests to explore the influence of concrete strength on tension stiffening behavior in reinforced concrete axial members. Three different concrete compressive strengths, 250, 650, and 900kgf/$\textrm{cm}^2$, were included as a main variable, while the ratio of cover thickness-to-rebar diameter was kept constant to be 2.62 to prevent from splitting cracking. As the results, it was appeared that, as higher concrete strength was used, less tension stiffening effect was resulted, and the residual deformation upon unloading was larger. In addition, the spacing between adjacent transverse cracks became smaller with higher concrete strength. The major cause for those results may be attributed to the fact that nonuniform bond stress concentration at both loaded ends and crack sections becomes severer as higher concrete is used, thereby local bond failure becomes more susceptible. From these findings, it would be said the increase in flexural stiffness resulting from using high-strength concrete will be much smaller than that predicted by the conventional knowledge. Finally, a factor accunting for concrete strength was introduced to take account for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening behavior of these tests.

Stress-Strain Response and Fracture of a Plain Concrete in Biaxial Loading (이축 하중을 받는 콘크리트의 응력-변형률 응답 및 파괴)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.921-926
    • /
    • 2001
  • In this paper the biaxial failure criteria and stress-strain response for plain concrete are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/fl=-l/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 398kgf/$cm^{2}$ are developed. The biaxial failure behaviors for three biaxial loading areas are also plotted respectively. In addition, the characteristics of stress-strain response under biaxial compression are compared and verified with the experimental and analytical results.

  • PDF

A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method

  • Fesharaki, Javad Jafari;Golabi, Sa'id
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.725-742
    • /
    • 2016
  • This paper is focused on stiffness ratio effect and a new method to specify the best pattern of piezoelectric patches placement around a hole in a plate under tension to reduce the stress concentration factor. To investigate the stiffness ratio effect, some different values greater and less than unity are considered. Then a python code is developed by using particle swarm optimization algorithm to specify the best locations of piezoelectric actuators around the hole for each stiffness ratio. The results show that, there is a line called "reference line" for each plate with a hole under tension, which can guide the location of actuator patches in plate to have the maximum stress concentration reduction. The reference line also specifies that actuators should be located horizontally or vertically. This reference line is located at an angle of about 65 degrees from the stress line in plate. Finally two experimental tests for two different locations of the patches with various voltages are carried out for validation of the results.

Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension (복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법)

  • Shim, Do-Jun;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.