• Title/Summary/Keyword: tension strength

Search Result 1,225, Processing Time 0.031 seconds

Properties of Adhesion in Flexure and Tension of Polymer Cement Mortar Using SAE Emulsion with Blast-Furnace and Fly Ash as a Repair Material (보수재료로서 고로슬래그 미분말 및 플라이애쉬를 혼입한 SAE 에멀젼 기반 폴리머 시멘트 모르타르의 휨접착 및 인장접착 특성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.485-494
    • /
    • 2019
  • This study is to evaluate the effect of admixtures such as blast-furnace slag and fly ash on adhesion in flexure and tension of polymer cement mortar(PCM) using SAE emulsion. The test specimens are prepared with five polymer-cement ratios and five admixture contents, and tested for flexural strength, adhesion in flexure, tensile strength and adhesion in tension. Based on the test results, no improvement of flexural strength and adhesion in flexure caused by admixtures in PCM can be indicated, but the tensile strength and adhesion in tension is improved due to mixing of the admixtures. In particular, the maximum of adhesion in tension of PCM with P/C 20% and BF content of 10% is 3.35MPa which is about 2.36 times higher than that of ordinary cement mortar, and 1.32 times that of PCM that does not contain any admixture. The average ratio of adhesion in tension to tensile strength of PCM was 48.7%. It is apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

Nonlinear Analysis of High Strength Reinforced Concrete Members Considering the Tension Stiffening Model (인장강성 모델을 고려한 고강도 철근콘크리트 부재의 비선형 해석)

  • 홍창우;윤경구;김경진;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.479-482
    • /
    • 1999
  • The tension stiffening effect, which means the maintaining a part of stiffness after cracking of concrete in tensile, exists at a reinforced concrete member because of the concrete softening and bonding stress between cracks. It is required to consider it for precise analysis and evaluation o structural behavior, due to the possibility of discrepancy between the actual behavior and the analysis without considering the tension stiffening effect. Making and adopting a tension stiffening model is the most simple and effective way for considering it at nonlinear analysis which indicated the estimation from models and experimental results were similar each others. The comparisons on RC beam were, also performed in order to analyzed the influence of concrete strength and steel ratio into the structural behavior. They indicated that the results from analysis estimated quite closely to the test results at low steel ratio, however, overestimated at high steel ratio. The overestimation increase linearly as concrete strength or steel ratio increased.

  • PDF

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.

Evaluation of Emergency Pothole Repair Materials using Polyurethane-Modified Asphalt Binder (폴리우레탄 개질 아스팔트 바인더를 사용한 포트홀 응급 보수재의 성능평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • PURPOSES : The objective of this study is to develop new pothole repair materials using polyurethane-modified asphalt binder, and to evaluate them relative to current pothole repair materials in order to improve the performance of repaired asphalt pavement. METHODS : In the laboratory, polyurethane-modified asphalt binder is developed, and then asphalt binder is added to produce pothole repair materials. In order to evaluate the properties of this new pothole repair material, both an indirect tension strength test and a direct tension strength test are performed to measure the material strength and bond strength, respectively. Additionally, the basic material properties are evaluated using the asphalt cold mix manual. The strength characteristics based on curing times are evaluated using a total of 7 types of materials (3 types of current materials, 2 types of new materials, and 2 types of moisture conditioned new materials). The indirect tension strength tests are conducted at 1, 2, 4, 8, 16, and 32 days of curing time. The bond strength between current HMA(Hot Mix Asphalt) and the new materials is evaluated by the direct tension strength test. RESULTS AND CONCLUSIONS : Overall, the new materials show better properties than current materials. Based on the test results, the new materials demonstrate less susceptibility to moisture, faster curing times, and an improved bond strength between HMA and the new materials. Therefore, the use of the new materials reported in this study may lead to enhanced performance of repairs made to asphalt pavement potholes.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Split Tension Fatigue Characteristics Analysis of Fatigue Tests Data for Concrete Pavements (콘크리트 포장 피로실험 데이터의 쪼갬인장 피로특성)

  • Kim, Dong-Ho;Kim, Sung-Hwan;Yun, Byung-Sung;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.139-147
    • /
    • 2003
  • The purpose of this study was to investigate and analyze the fatigue test data of pavement concrete. The static strength tests were carried out to check the compressive strength, flexural strength, and split tension strength at 56 days in order to minimize strength variation effect during test. The specimens were fabricated at twelves sections at a construction site of highway. The stress level and stress ratio of fatigue test were determined from static test results. The results are as follow: The flexural strength at 28 days mostly satisfied the criterion for design, but the compressive strength at 28 days were slightly below the criterion even though it satisfied at 56 days. The fatigue limit was 2 million cycles if the specimen was not failed to that cycles. The S-N curves were developed from the fatigue test results at each stress levels and each stress ratio. Then, the fatigue life of pavement concrete at a given stress level and fatigue strength of pavement concrete could be derived from these curves. Analysis using method No.2 was more acceptable because resulting of comparison and analysis using method No.2 was presented 2 sections were presented $R^2$ < 0.7, and other 2 sections were presented 0.7 < $R^2$ < 0.8, and the others 8 sections were $R^2{\geq}0.8$.

  • PDF

A Study on the Strength Characteristics of the FRP Bonding Method (FRP 이음방식에 따른 구조강도 특성에 관한 연구)

  • Kim, Kung-Woo;Kang, Dae-Kon;Baek, Myoung-Kee;Park, Jai-Hak
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.778-783
    • /
    • 2015
  • We studied about the strength characteristics of the FRP bonding method due to reduce accident on the oceans and protect life for my people. We test tension and bending strength of butt joint, lap joint, V-scarf joint, X-scarf joint. The result of test, it's pattern is similar both tension and bending strength. Tension strength and bending strength was excellent in order to X-scarf-butt joint-V-scarf-lap joint. The tension strength is the best properties X-scarf showed a 57% strength rate of the basic material, and bending strength showed a 77% strength rate of the basic material. Overall, the X-scarf 12t joint has most excellent properties of tension and bending strength. The lap joint has worst properties of tension and bending strength. We have to test having different over-lay of V-scarf and X-scarf joint each 12t, 16t, 20t. V-scarf of 20t over-lay has excellent character of tension and bending strength. But X-scarf of 12t over-lay has excellent character of tension and bending strength. The results are shown to the contrary. The ship is received a lot of stress. it's hard to compare a direction both actual and test. But we can acknowledge material basic characteristic of strength through tension and bending test. We give the four repair method; butt joint, lap joint, V-scarf joint, X-scarf joint and the reduced ratio in comparison with basic material; In addition give the separated data for V-scarf and X-scarf characteristic of 12t, 16t, 20t overlay length. For our study repair man can select good repair method in his work station.

Experimental Study on Spot Weld and Plug Weld of Automotive Body Panel (자동차 차체 패널의 점용접 및 플러그용접 특성에 대한 실험적 분석)

  • Kwon, Jongho;Kim, Janghoon;Lee, Yongwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.709-715
    • /
    • 2016
  • This paper presents a comparison of an experimental study on spot and plug welding of an automotive body panel. Spot welding is a common joining technology used in automotive body panel assembly. In automotive body repair, however, plug welding is widely used due to its technical simplicity and cost benefit. Some researchers have focused on the use of spot welding in the manufacturing process, but there has been very little research done with respect to the engineering analysis of the plug welding process. In this study, two kinds of specimens are considered to compare the difference of failure strength between spot weld and plug weld: normal tension and shear tension. The experimental results show, in both normal tension and shear tension, that spot welding has higher failure strength than plug welding. In addition, plug welding is more vulnerable to shear tension than normal tension. This study can be applied to further studies on practical optimization for maintenance and repair of automotive body panels.

Nominal Torsional Moment Strength of RC Beam with Torsional Moment Strength of Concrete (콘크리트의 비틀림강도를 포함한 RC보의 공칭비틀림강도)

  • 박창규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.73-84
    • /
    • 2002
  • Nominal shear strength of concrete beam is the combined strength of concrete shear strength and steel shear strength in current design code. But Torsional moment strength of concrete is neglected in calculation of the nominal torsional moment strength of reinforced concrete beam in current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But the tensile stresses of concrete after cracking are neglected in bending and torsion in design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded to the nominal torsional moment strength of reinforced concrete beam. To verify the validity of the proposed model, the nominal torsional moment strengths according to CEB, two ACI codes(89, 99) and proposed model are compared to experimental torsional strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.