• 제목/요약/키워드: tension crack

검색결과 655건 처리시간 0.029초

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

인장과 굽힘응력을 받는 판재의 표면균열해석 (Analysis of Surface Crack under Tension and Bending Stress in Plate)

  • 오환섭;박철희;허민구
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.121-128
    • /
    • 1998
  • In this study, when tension and bending stress act on plate simultaneously, stress intensity factor is analyzed at crack tip with using BEM(Boundary Element Method). In this analysis, stress intensity factors(S.I.F) are defined for variable ligament, aspect and stress ratio($\sigma$T/$\sigma$B). Consequently, predicted that crack grow to depth direction at low aspect and ligament ratio in tension stress and to surface direction in bending stress. Tension and bending stress act on plate same time, effect of tension stress in the first stage and effect of bending stress in the after stage was to observed. The outbreak of secondary crack in backside is under the control of stress amplitude and predict that the point of outbreak is mear backside.

  • PDF

열피로 균열성장시험을 위한 ESET 시편의 확장된 컴플라이언스 해 (Extended Compliance Solution of ESET Specimen for Thermal fatigue Crack Growth Test)

  • 이호진;김만원;이봉상
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.62-67
    • /
    • 2005
  • An eccentrically-loaded single edge crack tension specimen (ESET) is similar to a compact tension(CT) specimen loaded in tension-tension. The standard ESET specimen exhibits advantages over other types of cracked specimen, such as n, single-edge crack, and middle-crack tension specimen. The details of ESET specimen configuration, test procedure, and calculations are described in ASTM E647 standard. However, a difficulty in attaching COD gage to the knife-edge on the front foe of the specimen can be found when the size of ESET specimen is small for rapid cooling and heating in thermal fatigue testing. The finite element analysis is performed for the ESET specimen with projected knife-edge on the front foe and a crack-length-compliance equation is suggested for the new specimen configuration. Calibration test are conducted with 347 stainless steel to compare the measured crack length with the calculated crack length from the suggested compliance expression. The test results showed good agreements with those of analysis.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

재료 특성 변화에 따른 철근콘크리트 휨부재의 간접균열제어 방법 연구 (Indirect Crack Controling Method Affected by Variation of Material Characteristics in Reinforced Concrete Flexural Members)

  • 최승원;김우
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.87-98
    • /
    • 2011
  • 철근콘크리트 부재의 균열은 필수불가결한 현상이다. 따라서 효과적으로 균열폭을 측정하기 위한 많은 경험식이 제시되었고, 또한 간편한 적용성 때문에 철근 간격과 직경의 제어를 통한 간접균열제어법이 제시되고 널리 사용되고 있다. EC2에서는 최대균열간격과 평균변형률의 곱으로 설계 균열폭을 산정한다. 이 연구에서는 재료 특성에 따른 최대철근간격과 최대철근직경을 산정하였다. 특히 인장증강효과 모델과 최대균열간격에 따른 영향을 분석하였고, 이를 콘크리트구조설계기준에서 제시한 값과 비교하였다. 해석 결과 인장증강효과 모델에 따라 큰 차이가 발생하였고, 2차식 형태의 인장증강효과 모델과 Part II의 최대균열간격을 사용함으로써 과소평가되었다. 따라서 2차식 형태의 인장증강효과 모델을 사용함으로써 합리적인 간접균열제어가 가능하다. 또한 이를 통해 휨부재의 사용성 검증에 일관성을 확보할 수 있을 것으로 판단된다. 이와 함께 균열제어를 위한 두 가지 모델을 제안하였다.

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Crack Propagation at Boundary Face of Composite Compact Tension Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.337-341
    • /
    • 2013
  • In this study, fatigue crack propagation in composite material under fatigue is investigated by simulation result. When another material on the specimen exists vertically to the crack line, the phenomena that crack may go straight or propagate along the boundary face according to the elastic modulus ratio of another material to matrix are investigated with compact tension specimen by compliance method. Crack propagation direction is evaluated by compliance method. By arranging this study result systematically about the crack propagation behavior due to the stiffness of inhomogeneous material, high-tech material (automobile, aircraft and steel industry) can be improved. The estimation of safety design and life (construction & nuclear power station, etc.) will be of great value industrially.

인장-압축 하중 하의 균열선단의 탄.소성 응력해석 (Analysis of Elastic-Plastic Stress Fields near the Crack Tip under Tension-Compression Loading)

  • 석창성;김수용;김동중;안하늘;박은수;원종일
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, theoretical stress field analysis near the crack tip under tension-compression loading was performed. The results of the theoretical stress analysis were compared to the results of Finite Element Method(FEM). From this study, generation of tensile residual stress at crack tip was proved after 1-cycle of tension-compression loading, and the fracture toughness and the fracture load of a structure can be decreased by the residual stress.

  • PDF

Coulomb 이론을 이용한 인장균열 및 주동토압 (Tension Crack and Active Earth Pressure by Using Coulomb이s Theory)

  • 정성교;이만열;김문규
    • 한국지반공학회지:지반
    • /
    • 제12권6호
    • /
    • pp.101-114
    • /
    • 1996
  • Coulomb토압이론은 실무에서 주로 사용되고 있음에도 불구하고 점성토로 뒤채움된 옹벽에 대한 일반적인 조건에 적용할 수 있는 토압이론식이 존재하지 않는다. 여기서는 점성토로 뒤채움한 중력식 옹벽에 대해서 배수 및 비배수 해석으로 인장균열이 부시된 경우와 고려된 경우에 각각 토압이론식을 유도하였다. 그리고 상기의 조건들에 대해서 전주동토압과 인장균열 깊이를 구하여 설계도표를 작성하였다.

  • PDF

제하 컴플라이언스법 및 직류전위차법을 이용한 Zr-2.5Nb 압력관 휘어진 CT 시편의 균열시작 평가 (Evaluation of the Crack Initiation of Curved Compact Tension Specimens of a Zr-2.5Nb Pressure Tube Using the Unloading Compliance and Direct Current Potential Drop Methods)

  • 정현철;안상복;김영석
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1118-1122
    • /
    • 2005
  • The direct current potential drop (DCPD) method and the unloading compliance (UC) method with a crack opening displacement gauge were applied simultaneously to the Zr-2.5Nb curved compact tension (CCT) specimens to determine which of the two methods can precisely determine the crack initiation point and hence the crack length for evaluation of their fracture toughness. The DCPD method detected the crack initiation at a smaller load-line displacement compared to the UC method. As a verification, a direct observation of the fracture surfaces on the curved compact tension specimens was made on the CCT specimens experiencing either 0.8 to 1.0 mm load line displacement or various loads from $50\%\;to\;80\%$ of the maximum peak load, or $P_{max}$. The DCPD method is concluded to be more precise in determining the crack initiation and fracture toughness, J in Zr-2.5Nb CCT specimens than the UC method.