• 제목/요약/키워드: tensile-shear test

검색결과 516건 처리시간 0.033초

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

전단에 대한 강섬유 보강계수의 종합적 고찰 (The Overall Investigation of Steel Fiber Strengthening Factor in Shear)

  • 이현호;권영호;이화진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Soil-Bentonite 혼합토의 강도 특성 (Strength Characteristics of Soil-Bentonite Mixture)

  • 김광일;신동훈;임은상;김기영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.844-851
    • /
    • 2009
  • A soil mixture with low permeability and bentonite as an additive has been highly utilized as a cutoff material in landfills, banks, and dams. Even though it is anticipated that the water can seep through shear failures in the filter layer due to external loads and embankment loads during construction, usually only the coefficient of permeability of the soil mixture is considered rather than the changes of strength from the different amounts of additives. Therefore, the amount of bentonite was changed between 0%~4% in the soil mixture of the bed material to conduct a series of unconfined compressive strength, tensile strength, and shear strength tests on a specimen in order to study the characteristics of the strength. In the result, the unconfined compressive and tensile strength were increased along with the increased amount of bentonite in the low water content; however, the tensile strength in the consolidated-drained shear test generally showed similar values without significant changes.

  • PDF

마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 접합성 평가 (Evaluation of Friction Spot Joining Weldability of Al Alloys for Automotive)

  • 조현진;김흥주;천창근;장웅성;방국수
    • Journal of Welding and Joining
    • /
    • 제24권1호
    • /
    • pp.50-55
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, effects of joining parameters such as tool rotating speed, plunging depth, and joining time on the joints properties were investigated. A wide range of joining conditions could be applied to join Al alloys for automobile without defects in the weld zone except for certain welding conditions with a lower heat input. For sound joints without defects, tensile shear strength of joints was higher than acceptable criteria of tensile shear strength of resistance spot welded joints for aluminum.

Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(I) - 알루미늄 도금부착량이 용접부 강도에 미치는 영향 - (Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(I) - Effects of AI Coating Weight on Weld Strength -)

  • 김종도;이정한;김기철
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.65-71
    • /
    • 2007
  • Laser weldability of the aluminized steel for the full penetration welding will be described in this paper. We focused on the effect of Al coating conditions on weld strength. For these objectives, aluminized steel sheets that have various thickness and coating weight were prepared for laser welding. And then, tensile-shear and hardness test were carried out. At the same time, Al contents in weld after laser welding were analyzed and their correlations with mechanical properties were investigated. Besides, as removing partially coating layer, weldability has been investigated according to the position of coating layer. As a result of this study, tensile-shear strength was decreased with increasing Al contents in weld, and Al of coating layer caused grain growth.

펄스형 Nd:YAG레이저로 용접된 Inconel Tube의 전단강도 (Shear Strength of lnconel Tube Welded with Pulsed Nd:YAG Laser)

  • 장웅;김재도;정진만;김철중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 1995
  • The remote sleeve repair-welding technology using the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in the nuclear power plant has been developed. The laser welding has many advantages on deep penetration depth and narrow heat affect zone(HAZ). The inconel 600 tube and inconel 690 sleeve used high temperature and high pressure service have been welded as round lap welds. It is found that the relation between the connection width and welding parameters. It is found that the shear strength in proportion to the connection width by conducting tensile-shear tests.

  • PDF

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.

Pullout Test of Headed Reinforcing Bar in RC or SFRC Members with Side-Face Blowout Failure

  • Lee, Chang-Yong;Kim, Seung-Hun;Lee, Yong-Taeg
    • Architectural research
    • /
    • 제22권1호
    • /
    • pp.33-39
    • /
    • 2020
  • In this study, side-face blowout failure strength of high strength headed reinforcing bar, which is vertically anchoring between RC or SFRC members, is evaluated throughout pullout test. The major test parameters are content ratio of high strength steel fibers, strength of rebar, length of anchorage, presence of shear reinforcement, and the side concrete cover thickness planned to be 1.3 times of the rebar. In pullout test, tensile force was applied to the headed reinforcing bar with the hinged supports positioned 1.5 and 0.7 times the anchorage length on both sides of the headed reinforcing bar. As a result, the cone-shaped crack occurred where the headed reinforcing bar embedded and finally side-face blowout failure caused by bearing pressure of the headed reinforcing bar. The tensile strength of specimens increased by 13.0 ~26.2% with shear reinforcement. The pullout strength of the specimens increased by 3.6 ~15.4% according to steel fiber reinforcement. Increasing the anchoring length and shear reinforcement were evaluated to reduce the stress bearing ration of the total stress.

프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동 (Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces)

  • 갈경완;황진하;이득행;김강수;최일섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.78-88
    • /
    • 2012
  • 일반적으로 콘크리트는 경제성이 뛰어나지만 낮은 인장강도로 인하여 구조성능상의 한계를 가지고 있기 때문에 콘크리트와 결합된 다양한 합성재료의 특성을 활용한 구조부재의 개발이 진행되고 있다. 강섬유 보강 콘크리트(SFRC)는 높은 인장강도로 인하여 콘크리트의 재료적 단점을 보완할 수 있는 우수한 합성재료로서 알려져 있고, 특히 고강도 콘크리트의 화재시 폭렬현상에 대한 대안으로 여겨지고 있다. 또한, 프리스트레스트콘크리트(PSC) 부재는 장경간 구조에 매우 유리하며 일반철근콘크리트(RC) 부재에 비해 높은 전단강도를 가진다. 따라서, 이 연구에서는 SFRC에 프리스트레스를 적용한 강섬유 보강 프리스트레스트 콘크리트(SFR-PSC)부재의 전단거동을 이해하기 위하여 총 22개의 직접전단실험체를 제작하여 실험을 수행하였다. 또한, 실험결과를 바탕으로 SFR-PSC부재의 균열면에서의 균열전달 구성방정식을 제안하였다. SFR-PSC의 거동특성을 반영하여 제안된 재료관계식은 실험결과와 잘 일치하는 것으로 나타났다.

친환경 저수조를 위한 고밀도 폴리에틸렌과 저열성 콘크리트 합성재료 개발 (Material Development of Eco Water Tank with High Density Polyethylene and Low-temperature Concrete)

  • 장준호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.133-140
    • /
    • 2010
  • 본 연구의 목적은 저열 시멘트를 활용한 콘크리트와 고밀도 폴리에틸렌을 활용한 친환경 저수조를 평가하는 것이다. 친환경 저수조의 강도와 파괴모드를 평가하기 위하여 콘크리트와 고밀도 폴리에틸렌 복합체의 인장강도 시험, 다양한 종류의 콘크리트 수화열 실험, 다양한 혼화재를 활용한 수화열 실험 등을 수행하였다. 수행결과 전단키가 콘크리트와 고밀도 폴리에틸렌의 복합체로 거동할 수 있는 중요한 역할을 한다는 것을 규명하였고, ㄱ 타입의 전단키가 V 타입보다 40% 이상 인장강도를 증진시킨다는 것을 보여주었다. 연구결과 새로운 친환경 저수조는 기존의 콘크리트 저수조보다 안전성을 개선시키며, 보다 적용성과 활용성이 많은 것으로 기대된다.