• Title/Summary/Keyword: tensile stress-strain

Search Result 957, Processing Time 0.056 seconds

The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis (TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가)

  • 박동성;박영철;이동화;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

Tensile Test and Creep Tests of ETFE Membrane (ETFE 막재에 대한 인장실험과 크리프 실험)

  • Kim, Jae-Yeol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • Uniaxial tensile tests of ETFE membrane are performed in this paper. Three kinds ETFE membrane with different thickness are used in the tests. The tensile strength, the tensile strain at break and the stress-strain curve are obtained from the tests. Futhermore, The cycle loading test of ETFE membrane is carried out through using different values of cycle stress. The residual strain, the relaxation of stress and the change of the elastic modulus of foil are investigated. In the creep test, three kinds of temperature (25, 40 and 60 $^{\circ}C$)and three kinds of stress(3,6and9 MPa) are set respectively and the creep time lasts 24 hours.

  • PDF

Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.

Mechanical Properties of Hybrid FRP Rebar (하이브리드 FRP 리바의 역학적 특성)

  • 박찬기;원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature (고온에서의 형상기억복합재료의 비파괴평가에 관한 연구)

  • Kang, Dong-Hyun;Lee, Jin-Kyung;Park, Young-Choul;Ku, Hoo-Taek;Lee, Kyu-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF

The Mechanical Properties of High-Strength Concrete-The Effect of Strain Rate and the Tensile Strength- (고강도콘크리트의 재료역학적 특성 연구-변형도율과 인장강도를 중심으로-)

  • 김진근;박찬규;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.111-118
    • /
    • 1992
  • The mechanical behaviors related to the strain rate effect and the tensile strength of high-strength concrete were investigated in this study. For this purpose, concrete cylinder specimens with 4 different compressive strengths from 232kg/$\textrm{cm}^2$ to 1113kgf/$\textrm{cm}^2$ were tested and analysed on the mechanical properties(stress-strain relationship, compressive, modulus of elasticity, strain at peak compressive stress). From this experimental and analytical study, it seems that the current prediction model(ACI) for modulus of rupture need to be refined. Therefore, more refined equations for evaluation tensile strength of concrete are proposed.

  • PDF

Consideration on Effects of Mesh Systems on True Stress-Strain Acquisition Method over a Large Range of Strains by Tensile Test and Finite Element Method (유한요소망이 인장시험과 유한요소법을 이용한 진응력-진변형곡선 획득 기법에 미치는 영향에 관한 고찰)

  • Kim, Hong-Tae;Eom, Jae-Gun;Choi, In-Su;Lee, Min-Cheol;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.808-813
    • /
    • 2007
  • We present the numerical characteristics of a new true stress-strain curve acquisition method over a large range of strains by the tensile test and a finite element method through comparing the results obtained by various finite element mesh systems. The method is introduced in detail. The effects of the finite element mesh systems on the results are investigated to show its numerical characteristics of the new method. It is shown that the method is quite robust, implying that it can be used as a special function of the tensile test machines.

  • PDF

Effect of Ni and Mn on Strain Induced Martensite Behavior of 22Cr Micro-Duplex Stainless steel (22Cr 마이크로 듀플렉스 스테인리스강의 변형유기마르텐사이트에 미치는 Ni과 Mn의 영향)

  • Park, Jun-Young;Kim, Gi-Yeob;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.122-129
    • /
    • 2013
  • The microstructure and deformation behavior in 22Cr-0.2N micro-duplex stainless steels with various Ni and Mn contents were compared using by OM, TEM, and XRD. The 22Cr-0.2N duplex stainless steel plates were fabricated and hot rolled, followed by annealing treatment at the temperature range of $1,000-1,100^{\circ}C$. All the samples showed the common strain hardening behaviour during the tensile test at a room temperature. The steels tested at the temperatures of $-30^{\circ}C$ or $-50^{\circ}C$ showed a distinct inflection point in the stress-strain curves, which should be resulted from the formation of strain-induced martensite(SIM) of austenite phase. This was confirmed by TEM observations. The onset strain of a inflection point in a stress-strain curve should be depended up the value of $M_d30$. With the decrease of the tensile test temperature, the inflection point appeared earlier, and the strength and fracture strain were higher. The tensile behaviour was discussed from the point of austenite stability of the micro-duplex stainless steels with the different Ni and Mn content.

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF