• 제목/요약/키워드: tensile strength tests

검색결과 1,273건 처리시간 0.028초

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

수압파쇄시험 해석을 위한 중공원통 인장시험과 압열인장시험 화강암 인장강도 비교 (Comparison of Tensile Strengths in Granite Using Brazilian Tests and Hollow Cylinder Tests for Hydraulic Fracturing Test Interpretation)

  • 조영욱;장찬동;이태종;김광염
    • 터널과지하공간
    • /
    • 제23권5호
    • /
    • pp.362-371
    • /
    • 2013
  • 수압파쇄법으로 최대수평주응력 크기 규명에 필요한 요소 중 하나인 암반의 인장강도를 측정하는 방법에 대해 연구하였다. 석모도 시추공에서 회수한 화강암 시료에 대해 두 가지 실내시험(중공원통 인장시험 및 압열인장시험)으로 인장강도를 측정하고 두 결과가 차이를 보이는지 비교하였다. 중공원통 인장시험에서는 높은 수압증가율 상태에서 더 높은 인장강도를 보여, 현장의 수압파쇄시험에서 보인 수압 증가율 상태에서 측정된 인장강도나 그 증가율로 보정된 인장강도를 이용해야한다는 점을 보였다. 인장강도에 대한 수압 증가율 효과와 크기효과를 보정하면 중공원통 인장시험 결과는 압열인장시험 결과와 유사하게 나타났으며 이는 수압파쇄 인장강도를 위해 압열인장강도를 이용할 수도 있다는 점을 시사한다.

지오그리드의 시공중 손상 평가를 위한 실험적 연구 (Experimental Study for Installation Damage Assessment of Geogrid)

  • 조삼덕;이광우;오세용
    • 한국환경복원기술학회지
    • /
    • 제8권1호
    • /
    • pp.27-36
    • /
    • 2005
  • Geosynthetic reinforcements may be damaged during its installation in the filed. The installation damage mainly depends on two factors such as materials used and construction activities. This paper describes the results of a series of field tests, which are conducted to assess the installation damage of geogrid according to different maximum grain sizes of fills (40, 60, and 80 mm). These tests are done in three sites for twelve different kinds of geogrids. After field tests, the changes in tensile strength of the geogrids is determined from wide width tensile tests using both damaged and undamaged specimens. In the results of tests, tensile strength of the relatively flexible geogrids after field installation tests was decreased about from 20% to 40% according to the increment of the maximum grain size. On the other hand, for the relatively stiff geogrids, the loss of the tensile strength after site installation was examined below 5.2% independent of the maximum grain size of the soils. The results of this study show that the installation damage significantly depends on the stiffness of geogrid and is more obvious to a flexible geogrid and a fill material having higher maximum grain size.

임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석 (An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach)

  • 이연규
    • 터널과지하공간
    • /
    • 제18권3호
    • /
    • pp.194-201
    • /
    • 2008
  • 횡등방성 암석의 인장강도 특성 해석을 위하여 새로운 이방성 인장파괴함수를 제안하였다. 제안된 함수에서 인장강도는 연약면과 수직한 방향에서 최소가 되며 연약면과 평행한 방향쪽으로 지수함수적으로 증가하면서 최대값에 수렴된다. 제안된 이방성 인장파괴함수는 실험적으로 측정이 가능한 3개의 강도정수로 정의된다. 제안된 함수를 임계면법에 적용하여 연약면의 방향성에 따른 횡등방성 암석의 인장강도 및 파괴면의 방향을 탐색할 수 있는 수치해석적 기법을 제시하였다. 문헌에 보고된 횡등방성 암석의 직접인장시험 결과를 모사함으로써 제안된 방법의 적합성을 검토하였다. 수치해석결과와 직접인장시험 결과는 전반적으로 유사한 결과를 보여주었다.

차체용 고장력 강판의 동적 인장 특성 평가 (Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body)

  • 김석봉;허훈;신철수;김효균
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

T-스티프너 보강 콘크리트충전 각형강관 기둥-H형강 보 접합부의 인장거동 (Tensile Behavior of CFT Column-to-H beam Connections with External T-shaped Stiffeners)

  • 강창훈;신경재;오영석;문태섭
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.121-130
    • /
    • 2002
  • This paper presents the tensile behavior of a Concrete-Filled Square Steel Tubular (CFT) column to H-beam welded connections. These connections were externally reinforced with T-shaped stiffeners at the junction of CFT column and beam. The tensile loading tests of eighteen tee-joint connections and finite element analysis using ANSYS were carried out. The main parameters of tests are as follows: 1) the thickness of Square Steel Tubular Column : 6 mm, 9 mm, 2) the strength ratios of tensile strength of horizontal stiffeners to tensile strength of beam flange : 70 %, 100 %, 150 %, 3) the strength ratios of shear strength of vertical stiffeners to tensile strength of beam flange : 80 %, 115 %, 160 %. The results of the tests demonstrate that overall behavior and failure modes of all the specimens are governed mainly by the horizontal stiffeners rather than the vertical stiffeners, and the vertical stiffener played only a role in transferring load introduced from beam to column.

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권2호
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Mn-Mo-Ni 저합금강의 SP-곡선과 인장물성과의 실험적 관계 (Empirical Relationship Between SP-curves and Tensile Properties in Mn-Mo-Ni Low Alloy Steels)

  • 이재봉;김민철;박재학;이봉상
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.554-562
    • /
    • 2004
  • An empirical relationship between parameters from SP curves and tensile properties has been systematically investigated by experimental tests and FEM simulations. A series of SP and tensile tests were performed. SP tests were also simulated by FE analysis with various tensile properties. It was found that the yield loads(Py) and the maximum loads( $P_{MAX}$) in SP curves were linearly related with the yield strength($\sigma$$_{o}$) and the tensile strength($\sigma$$_{UTS}$), respectively. The yield loads defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region showed better relation to the yield strength than those from offset line. The maximum loads in SP curves showing plastic instability region was linearly related with the tensile strengths. The slope of SP curves in simulation results had a close correlation with the hardening coefficient and hardening strength as well.l.l.l.

인장/압축 Fragmentation시험법과 음향방출을 이용한 단 섬유 복합재료의 미세파괴 메커니즘 (Microfailure Mechanisms of Single-Fiber Composites Using Tensile/Compressive Fragmentation Techniques and Acoustic Emission)

  • 김진원;박종만;윤동진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.159-162
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Amino-silane and maleic anhydride polymeric coupling agents were used via the dipping and electrodeposition (ED), respectively. Both coupling agents exhibited higher improvements in interfacial shear strength (IFSS) under tensile tests than compressive cases. However, ED treatment showed higher IFSS improvement than dipping case under both tensile and compressive test. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed during compressive test. For both the untreated and treated cases AE distributions were separated well under tensile testing. On the other hand, AE distributions were rather closer under compressive tests because of the difference in failure energies between tensile and compressive loading. Under both loading conditions, fiber breaks occurred around just before and after yielding point. Maximum AE voltage fur the waveform of carbon or basalt fiber breakage under tensile tests exhibited much larger than those under compressive tests.

  • PDF