DOI QR코드

DOI QR Code

Comparison of Tensile Strengths in Granite Using Brazilian Tests and Hollow Cylinder Tests for Hydraulic Fracturing Test Interpretation

수압파쇄시험 해석을 위한 중공원통 인장시험과 압열인장시험 화강암 인장강도 비교

  • 조영욱 (충남대학교 대학원 지질학과 응용 지질학전공) ;
  • 장찬동 (충남대학교 자연과학대학 지질환경과학과) ;
  • 이태종 (한국지질자원연구원 지구환경연구본부 지질자원연구팀) ;
  • 김광염 (한국건설기술연구원 SOC성능연구소 Geo인프라연구실)
  • Received : 2013.07.18
  • Accepted : 2013.09.03
  • Published : 2013.10.31

Abstract

We conducted hollow cylinder tensile strength tests and Brazilian tests in Seokmo granite to measure tensile strength necessary for estimating the magnitude of the maximum horizontal principal stress in hydraulic fracturing stress measurements. Two different pressurization rates were used in hollow cylinder tests. Tensile strengths were determined to be higher at higher pressurization rate, which suggests that tensile strength should be measurement at the same rate used in actual in situ hydraulic fracturing tests. Considering the effect of pressurization rate and specimen size on tensile strength, the hollow cylinder tests and Brazilian tests yield similar results each other. This demonstrates that Brazilian tests can be utilized to produce representative tensile strengths for interpretation of hydraulic fracturing test results.

수압파쇄법으로 최대수평주응력 크기 규명에 필요한 요소 중 하나인 암반의 인장강도를 측정하는 방법에 대해 연구하였다. 석모도 시추공에서 회수한 화강암 시료에 대해 두 가지 실내시험(중공원통 인장시험 및 압열인장시험)으로 인장강도를 측정하고 두 결과가 차이를 보이는지 비교하였다. 중공원통 인장시험에서는 높은 수압증가율 상태에서 더 높은 인장강도를 보여, 현장의 수압파쇄시험에서 보인 수압 증가율 상태에서 측정된 인장강도나 그 증가율로 보정된 인장강도를 이용해야한다는 점을 보였다. 인장강도에 대한 수압 증가율 효과와 크기효과를 보정하면 중공원통 인장시험 결과는 압열인장시험 결과와 유사하게 나타났으며 이는 수압파쇄 인장강도를 위해 압열인장강도를 이용할 수도 있다는 점을 시사한다.

Keywords

References

  1. Hubbert, K. M. and Willis, D. G.,1957, Mechanics of hydraulic fracturing, Petrol. Trans. AIME, T. P. 4597, 210, 153-166.
  2. Haimson, B. C. and Fairhurst, C., 1967, Initiation and extension of hydraulic fractures in rocks, Society of Petroleum Engineers, 7, 310-318. https://doi.org/10.2118/1710-PA
  3. Rummel, F., 1987, Fracture mechanics approach to hydraulic fracturing stress measurements, in Atkinson, B. K., eds., Fracture Mechanics of Rocks, Academic Press, London, 217-239.
  4. Zoback, M. D. and Haimson, B. C., (Eds), Proc. Workshop on Hydraulic fracturing measurements, U.S. National Committee for Rock Mechanics, National Academy press, Washington, D. C.
  5. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeb, D., Muller, B., 2008, Release of the world stress map available online at www.world-stress-map.org, 2008.
  6. Ito, T., Evans, K., Kawai, K., Hayashi, K., 1999, Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress, Int. J. Rock Mech. & Min. Sci., 36, 811-826. https://doi.org/10.1016/S0148-9062(99)00053-4
  7. Rutqvist, J., Tsang, C. F., Stephansson, O., 2000, Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture, Int. J. Rock Mech. & Min. Sci., 37, 107-120. https://doi.org/10.1016/S1365-1609(99)00097-0
  8. Evans, K. F., Scholz, C. H., Engelder, T., 1988, An analysis of horizontal fracture initiation during hydrofracturing stress measurements in granite at North Conway, New Hampshire, Geophysics, 93, 251-264. https://doi.org/10.1029/JA093iA01p00251
  9. Kirsch, G., 1898, Theorie der elastizitat und die Bedurfnisse der festigkeitslehre, Zeit. Ver. dt. Ingenieure, 42, 797-807.
  10. Haimson, B. C., 1968, Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth, Ph. D. Thesis, Univ. of Minnesota, 234p.
  11. Cornet, F. H., 1982, Analysis of injection tests for in-situ stress determination, In: Proceedings of Workshop Hydraulic fracturing Stress Measurement, Menlo Park, 1982, 414-443.
  12. Cheung, L. S. and Haimson, B. C., 1989, Laboratory study of hydraulic fracturing pressure data-How valid is their conventional interpretation?, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 595-604. https://doi.org/10.1016/0148-9062(89)91440-X
  13. Bredehoeft, J. D., Wolff, R. G., Keys, W. S., Shutter, E., 1976, Hydraulic fracturing to determine regional in situ stress field, in the Piceance Basin, Colorado, Geol. Soc. Amer. Bull., 87, 250-258. https://doi.org/10.1130/0016-7606(1976)87<250:HFTDTR>2.0.CO;2
  14. Erarslan, N. and Williams, D. J., 2012, Experimental, numerical and analytical studies on tensile strength of rocks, Int. J. Rock Mech. & Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
  15. Ye, J. H., Wu, F. Q., Zhang, Y., Ji, H. G., 2012, Estimation of the bi-modulus of materials through deformation measurement in a brazilian disk test, Int. J. Rock Mech. & Min. Sci., 52, 122-131. https://doi.org/10.1016/j.ijrmms.2012.03.010
  16. Haimson, B. C. and Cornet, F. H., 2003, ISRM suggested methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures(HTPF), Int. J. Rock Mech. & Min. Sci., 40, 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002
  17. Ohoka, M., Funato, A., Takahashi, Y., 1997, Tensile test using hollow cylindrical specimen, Int. J. Rock Mech. & Min. Sci., 34, 1-11. https://doi.org/10.1016/S1365-1609(97)80028-7
  18. Ringstad, C., Brevik, I., Addis, M. A., Santarelli, F. J., 1994, Scale effects in hollow cylinder tests, Proc 2nd conference on Scale Effects in Rock Masses, Lisbon.
  19. Yamashita, F., Mizoguchi, K., Fukuyama, E., Omura, K., 2010, Reexamination of the present stress state of the Atera fault system, central Japan, based on the calibrated crustal stress data of hydraulic fracturing tests obtained by measuring the tensile strength of rocks, Journal of Geophysical Research, 115, B04409.
  20. Haimson, B. C. and Z. Zhao, 1991, Effect of Borehole Size And Pressurization Rate On Hydraulic Fracturing Breakdown Pressure, in Rock Mechanics Contribution and Challenges: Proc. 31st US Symposium on Rock Mechanics, 191-199.
  21. Zoback, M. D. and Pollard, D. D., 1978, Hydraulic fracture propagation and the interpretation of pressuretime records for in situ stress determination. Proc. 19th U.S. Symp. on Rock Mech. 14-22.
  22. Karfakis, M. G., 1986, A critical review of fracture mechanics as applied to hydraulic fracturing stress measurements. Proc. 1986 SEM Spring Conf. on Expl. Mech., 141-147.
  23. Jaeger, J. C. and Cook, N. G. W., 1976, Fundamentals of rock mechanics, 2nd ed., 513 pp, Methuen, London.
  24. ISRM, 1977, International society for rock mechanics, Suggested methods for determining tensile strength of rock materials, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, 99-103.
  25. KSRM, 2006, Korean Society for Rock Mechanics, Standard test method for indirect tensile strength of rock by the Brazilian tests, Tunnel and Underground Space, 16, 279-280.
  26. Chen, C. S., Pan, E., Amadei, B., 1998, Determination of deformability and tensile strength of anisotropic rock using brazilian tests, Int. J. Rock Mech. & Min. Sci., 35, 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
  27. Kranz, R. L., 1983, Microcracks in rocks: A review, Tectonophysics, 100, 449-480. https://doi.org/10.1016/0040-1951(83)90198-1
  28. Wong, T. F., 1985, Geometric probability approach to the characterization and analysis of micro cracking in rocks, Mech. Materials, 4, 261-276. https://doi.org/10.1016/0167-6636(85)90023-7
  29. Lanaro, F., Sato, T., Stephansson, O., 2009, Microcrack modelling of brazilian tensile tests with the boundary element method, Int. J. Rock Mech. & Min. Sci., 46, 450-461. https://doi.org/10.1016/j.ijrmms.2008.11.007
  30. Nicksiar, M. and Martin, C. D., 2013, Crack initiation stress in low porosity crystalline and sedimentary rocks, Engineering geology, 154, 64-76. https://doi.org/10.1016/j.enggeo.2012.12.007
  31. Rocco, C., Guinea, V., Planas, J., Elices, M., 1999a, Size effect and boundary conditions in the brazilian test: Experimental verification, Materials and Structures, 32, 210-217. https://doi.org/10.1007/BF02481517
  32. Rocco, C., Guinea, V., Planas, J., Elices, M., 1999b, Size effect and boundary conditions in the brazilian test: Theoretical analysis, Materials and Structures, 32, 437-444. https://doi.org/10.1007/BF02482715
  33. Claesson, J. and Bohloli, B., 2002, Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution, Int. J. Rock Mech. & Min. Sci., 39, 991-1004. https://doi.org/10.1016/S1365-1609(02)00099-0
  34. Cho, S. H., Ogata, Y., Kaneko, K., 2003, Strain-rate dependency of the dynamic tensile strength of rock, Int. J. Rock Mech. & Min. Sci., 40, 769-777.

Cited by

  1. Cleavage Dependent Indirect Tensile Strength of Pocheon Granite Based on Experiments and DEM Simulation vol.26, pp.4, 2016, https://doi.org/10.7474/TUS.2016.26.4.316