• 제목/요약/키워드: tensile stiffness

검색결과 545건 처리시간 0.03초

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

$TiO_2$/PEG처리 면직물의 물성과 자외선 차단성능 (Properties and UV-cut effects of cotton fabric treated with $TiO_2$/PEG)

  • 김정진;장정대
    • 한국염색가공학회지
    • /
    • 제14권4호
    • /
    • pp.223-228
    • /
    • 2002
  • Cotton fabric was treated with $TiO_2$-PEG600 dispersion colloid by pad-dry-cure and wet-fixation process to improve the performance properties as well as UV-cut effect. As the concentration of $TiO_2$/PEG increased tensile strength, crease resistance, stiffness of treated cotton fabric increased. Application of wet-fixation method provided a further improvement in tensile strength, crease resistance, stiffness of treated cotton fabric. Cotton fabric treated with $TiO_2$/PEG was more efficient in UV-cut property than untreated cotton.

선인장에 의하여 유도된 천연고무의 비등방성 (Pre-strain Induced Anisotropy of Filled Natural Rubber)

  • 박병호
    • Elastomers and Composites
    • /
    • 제36권1호
    • /
    • pp.30-36
    • /
    • 2001
  • 이 연구의 목적은 카본블랙이 충전된 천연고무에서 비 등방성 발생에 영향을 주는 인자를 조사하기 위함이다. 고분자 사슬의 방향성은 인장특성에 영향을 준다. Pre-strained 방향의 parallel 시편은 등방성 혹은 perpendicular 시편에 비하여 낮은 인장영역에서 낮은 강도를 보이지만 높은 신장영역에서 높은 강도를 보인다. 고 인장 영역에서 parallel한 천연고무 시편은 비결정성인 SBR에 비하여 높은 강도를 보여주고 있다. 이것은 parallel 시편의 방향성에 영향을 받는 것으로, 시편의 방향성은 2차 인장시 결정화를 위한 핵으로 작용하여 결정화도를 증가시키는 것으로 보인다.

  • PDF

Design of Seismic Isolated Tall Building with High Aspect-Ratio

  • Kikuchi, Takeshi;Takeuchi, Toru;Fujimori, Satoru;Wada, Akira
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2014
  • When seismic isolation system is applied to high aspect-ratio (height/wide-ratio) steel structures, there are several problems to be taken into consideration. One is lifting up tensile force on the isolation bearing by overturning moment caused by earthquake. Another is securing building stiffness to produce seismic isolation effects. Under these conditions, this paper reports the structural design of high-rise research building in the campus of Tokyo Institute of Technology. With the stepping-up system for the corner bearings, the narrow sides of single span framework are designed to concentrate the dead load as counter-weight for the tensile reaction under earthquake. Also we adopted concrete in-filled steel column and Mega-Bracing system covering four layers on north & south framework to secure the horizontal stiffness of the building.

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.

면내압축하중을 받는 선체판의 비선형거동에 관한 연구 (A Study on the Nonlinear Behavior of Plate under Thrust)

  • 고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1996년도 The Korean Institute of Navigation 1996년도 한·중 국제학술 심포지움 및 추계학술발표회 논문집
    • /
    • pp.95-110
    • /
    • 1996
  • High Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view point this is very preferable since the reduction in the hull weight. However to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling, buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross section of a ship's hull also decreases. this may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonlinear analysis of isolated and stiffened plates is required for structural system analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluate the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Layered model of aging concrete. General concept and one-dimensional applications

  • Truty, Andrzej;Szarlinski, Jan;Podles, Krzysztof
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.703-721
    • /
    • 2016
  • A novel approach to modeling concrete behavior at the stage of its maturing is presented in this paper. This approach assumes that at any point in the structure, concrete is composed of a set of layers that are activated in time layer by layer, based on amount of released heat that is produced during process of the concrete's maturing. This allows one to assume that each newly created layer has nominal stiffness moduli and tensile/compressive strengths. Hence introduction of explicit stiffness moduli and tensile/compressive strength dependencies on time, or equivalent time state parameter, is not needed. Analysis of plain concrete (PC) and reinforced concrete (RC) structures, especially massive ones, subjected to any kind of straining in their early stage of existence, mostly due to external loads but especially by thermal loading and shrinkage, is the goal of the approach. In this article a simple elasto-plastic softening model with creep is used for each layer and a general layered model behavior is illustrated on one-dimensional (1D) examples.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENTS BY MECHANICAL LOADING(I) - EXPERIMENTAL EXAMINATION -

  • Jang, Kyoung-Bok;Yoon, Hun-Sung;Cho, Sang-Myoung
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.372-377
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

감즙 염색에 의한 레이온 직물의 역학적 특성 (Mechanical Properties of Rayon Fabrics dyed with Persimmon Juice)

  • 배정숙
    • 한국의류산업학회지
    • /
    • 제16권5호
    • /
    • pp.791-799
    • /
    • 2014
  • For development of dyeability, the rayon fabrics were dyed repeatedly with persimmon juice by padding mangle. The merit of padding-based dyeing was easier color reproduction over traditional hand dyeing where various colors and color fastness to light and laundering are hard to obtain. We evaluated the mechanical properties and hand value by Kawabata Evaluation system for dyed rayon fabrics. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity load-extension curve and tensile energy per unit length of the rayon fabrics were increased, but the tensile resilience of fabrics were decreased. The value of shear stiffness and shear hysteresis were increased. Also compression resilience and linearity of compression thickness were increased. The rayon fabrics dyed with persimmon juice had shown the thickness and weight increase as the number of padding increase. As repeating times of dyeing with persimmon juice were increased, among the 6 hand values, the item of koshi(stiffness) and Hari(anti-drape stiffness), fukurami(fullness and softness) were increased. while Shinayakasa (flexibility with soft feeling) and Shari(crispness) were greately decreased. The amount of coated persimmon juice on the surface of the fabric was gradually increased as the padding times of dyeing.

자동차 내장트림용 고강성 경량 다층보드 개발 (Development of the Lightweight Multi-layered Board with High Stiffness for Automotive Interior Trims)

  • 이규세;이경식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.41-46
    • /
    • 2007
  • Lightweight multi-layered boards with high stiffness for the automotive interior trims were developed, which were composed of a single material. The boards were constructed in the form of substrate/core/substrate with newly developed materials. The materials which have high tensile strength and elongation were selected for the substrate materials, and those which have high compressive strength and low density were selected for the core materials. 25 types of multi-layered boards were fabricated using the selected substrate and core materials. The compatibility with the skin materials, the formability and the tensile strength and flexural strength of the specimens were evaluated. The results show that three types of multi-layered boards(Kenboard/EPP foam/Kenboard, Twintex/PP honeycomb/Twintex, Curv sheet/EPP foam/Curv sheet) are appropriate for the automotive interior trims. Considering the ease of materials supply and the economical aspect, Kenboard/EPP foam/Kenboard is thought to be the most realistic alternative.