• Title/Summary/Keyword: tensile resistance

Search Result 1,473, Processing Time 0.027 seconds

Film Properties of Cold Blending Emulsion Between Poly(vinyl Acetate) and Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate)와 Poly(vinyl acetate-co-ethylene) 에멀젼을 이용한 상온 블렌드 에멀젼의 Film 특성)

  • Kim, Ho-Young;Yoo, Sung-Hee;Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.117-124
    • /
    • 2011
  • This study was made on the poly(vinyl acetate) (PVAc) and poly(vinyl acetate- ethylene) (VAE) emulsion polymer blend which used PVA as protective colloid, and the PVA used as protective colloid was existed in each emulsion film before blend and even in the film after the blend consecutively. It makes us expect excellent adhesive power among particles that form the blend. Emulsion blends with different Tg are important target of concerning, and PVAc/VAE emulsion blend suggested simple and excellent research method. As a result of blend, elongation was lowered by the increase of PVAc, and the plasticizer used in making PVAc affected on the Tg of blend and lowered Tg of VAE emulsion, and the synergy effect of two blends was seen for the tensile strength, thermal resistance, and adhesive strength.

Synthesis and Properties of Polyurethane Dispersion Containing Monomeric Diol (Monomeric Diol에 따른 수분산 폴리우레탄의 합성 및 특성)

  • Shin, Sang-Hoon;Jeong, Boo-Young;Chung, Il Doo;Jo, Nam-Ju;Cheon, Jung-Mi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.100-105
    • /
    • 2010
  • In this study, polyurethane dispersion was prepared by polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), and monomeric diol. The effect of various monomeric diol, polyol/monomeric diol molar ratio and DMPA contents on the properties of polyurethane dispersion were investigated. As the molecular weight of monomeric diol and monomeric diol molar ratio increased, $T_g$ gradually increased. And when DMPA contents increased, also $T_g$ gradually increased. In the results of mechanical properties, when the molecular weight of monomeric diol, monomeric diol molar ratio of polyol/monomeric diol and DMPA contents increased, tensile strength was increased. Finally, optimum peel strength obtained when polyol/monomeric diol ratio was 8 : 2.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.

An Experimental Study on the Characteristic of Porous Concrete using different Aggregates (골재의 종류에 따른 포러스콘크리트의 특성에 관한 실험적 연구)

  • Jung, Si-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • Porous concrete is used of various parts by advantage of porous. Example of growing of plant is possible, and dwelling of creature, and filter functions of various contaminant, and decrease of noise, and so on. This research is for porous concretes that were used by four aggregate rubble, refreshing aggregate, expanded clay, orchid stone. This research estimate that physical and mechanical characteristics of fresh concrete and hardened concrete. The purpose of this research is to make environment-friendly porous concrete. This research's conclusion is as following : 1. Porous Concrete's slump was measured 12~14cm with rubble, 12~16cm with refreshing aggregate, 11~13cm with expanded clay, 11~13cm with orchid stone. Weight of aggregate was bigger, slump price appeared by bigger thing. Because placed Porous Concrete is low viscosity and small resistance between aggregate, it estimated that have high workability. 2. Porous Concrete's unit weight was measured 1.71~1.75t/$\textrm{m}^3$ with rubble, 1.58~1.62t/$\textrm{m}^3$ with refreshing aggregate, 1.19~1.20t/$\textrm{m}^3$ with expanded clay, 0.98~1.06t/$\textrm{m}^3$ with orchid stone. Showed aspect such as weight of aggregate. 3. Porous Concrete's compressive strength was measured 76~102kgf/$\textrm{cm}^2$ with rubble, 51~60kgf/$\textrm{cm}^2$ with refreshing aggregate, 30~40kgf/$\textrm{cm}^2$ with expanded clay, 13~16kgf/$\textrm{cm}^2$ with orchid stone. 4. Tendency of tensile strength and bending strength showed generally similarly with compressive strength, but showed low value fewer than 15kgf/$\textrm{cm}^2$ Therefore, wire mesh, reinforcing rod, such as establishment of frame is considered to need in reinforcement about tensility or flexures in case receive tensility or produce product of thin absence form. It concludes by speculating on the consequences of extrapolating the results of study to remodelling the office building being already existence.

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

A Review on the Performance Test of a High-Speed Planing Hull with 35 knot Speed by Appling the Streamlined Step of Hull Form (유선형 스텝 선형을 적용한 35 knot급 고속활주선의 성능평가에 대한 고찰)

  • Moon, Byung Young;Go, Ho Nam;Lee, Ki Yeol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-102
    • /
    • 2018
  • As a recent technical approach, a high-speed planing hull was tried to realize a friction reducing system by simultaneously actuating the triple streamlined step hull form in association with optimum speed of 35 knot planing for fishing boat. In this approach, the streamlined step hull form with triple structure of type was attached under the bottom of high-speed planing hull, while a friction resistance is reduced in the process of running at the speed of 35 knot. In addition, this research was to make a performance test as to the manufactured product and acquire the purposed values and the development items. Actually, after manufacturing the desired prototype of high-speed planing hull, the significant items, fuel efficiency (second) and amount of fuel consumption (degree) including maximum speed (knot) were estimated for a performance test. And tensile strength (MPa) and bend strength (MPa) as to the completed prototype like a high speed planing hull were also acquired during the test.

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Evaluation of the Basic Properties of Concrete with Types of Cellulose Fibers (셀룰로오스 섬유 종류에 따른 콘크리트의 기초 물성 평가에 관한 연구)

  • Park, Yong-Kyu;Lee, Joo-Hun;Jeon, In-Ki;Kim, Hyun-Woo;Yoon, Ki-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.419-425
    • /
    • 2011
  • Topping concrete that is not reinforced with rebar to prevent poor tensile performance is vulnerable to cracking. In this study, jute, which is known to be an excellent natural fiber material for strengthening concrete performance, was compared with other cellulose fibers in terms of its capacity to reduce the cracking of concrete. As a result, it was found that compared with concrete using other fibers, concrete using jute fiber showed more than a 50 % reduction of plastic shrinkage crack resistance with the contents of 0.9 kg/$m^3$ and 1.2 kg/$m^3$ for. For impact strength tests, the final destruction of WF and PULP fibers took up to 5 times the number of falls, while jute has 10-18 circuitry, showing excellent ductility properties.

Effect of Al2O3 Surface Passivation by Thermal Oxidation of Aluminum for AlGaN/GaN Structure (Al의 열산화 방법을 이용한 AlGaN/GaN 구조의 표면 Al2O3 패시베이션 효과)

  • Kim, Jeong-Jin;Ahn, Ho-Kyun;Bae, Seong-Bum;Pak, Young-Rak;Lim, Jong-Won;Moon, Jae-Kyung;Ko, Sang-Chun;Shim, Kyu-Hwan;Yang, Jeon-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.862-866
    • /
    • 2012
  • Surface passivation of AlGaN/GaN heterojunction structure was examined through the thermal oxidation of evaporated Al. The Al-oxide passivation increased channel conductance of two dimensional electron gas (2DEG) on the AlGaN/GaN interface. The sheet resistance of 463 ohm/${\Box}$ for 2DEG channel before $Al_2O_3$ passivation was decreased to 417 ohm/${\Box}$ after passivation. The oxidation of Al induces tensile stress to the AlGaN/GaN structure and the stress seemed to enhance the sheet carrier density of the 2DEG channel. In addition, the $Al_2O_3$ films formed by thermal oxidation of Al suppressed thermal deterioration by the high temperature annealing.

Property Evaluation of Ti Powder and Its Sintered Compacts Prepared by Ti Scrap (티타늄 스크랩을 이용한 분말제조 및 소결 성형체의 특성평가)

  • Lee, Seung-Min;Choi, Jung-Chul;Park, Hyun-Kuk;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • In this study, Ti powders were fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. The Ti powders were prepared from the spark plasma sintering (SPS) and their microstructure was investigated. Hydrogenation reactions of Ti scrap occurred at near $450^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at $750^{\circ}C$ for 2 hrs in a vacuum of $10^{-4}$ torr. After the HDH process, deoxidation treatment was carried out with the Ca (purity: 99.5%) at $700^{\circ}C$ for 2 hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by the HDH process. In order to fabricate the Ti compacts, Ti powder was sintered under an applied uniaxial punch pressure of 40 MPa in the range of $900-1200^{\circ}C$ for 5 min under a vacuum of $10^{-4}$ torr. The relative density of the compact was 99.5% at $1100^{\circ}C$ and the tensile strength decreased with increasing sintering temperature. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress. Ti improved the corrosion resistance of the Ti compacts, and the Pd powders were mixed with the HDH Ti powders.