• 제목/요약/키워드: tensile modulus

검색결과 1,191건 처리시간 0.034초

Ceramic 섬유의 강도 평가에 대한 Weibll 이론의 적용 (Application of Weifull강s Theory to Evaluation of Strength for Ceramic Fibers)

  • 이지환;김현수;한상훈
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.1043-1049
    • /
    • 1990
  • In this work, strength of ceramic fibers and monofilament composites were evaluated on the basis of Weibull's theory. The fibers used were β-SiC and γ-Al2O3 monofilament composites was fabricated by coating Al on the fiber surface by the use of vacuum evaporation method. Average tensile strength of ceramic fibers showed the tendency to linearly decrease with increasing gauge length. Also, Weibull moduli of ceramic fibers were decreased with increasing gauge length, Weibull modulus of β-SiC was 3.5 for 6-50mm, 2.8 for 100-200mm. Weibull modulus of γ-Al2O3 was 6.5 for 20-50mm, 6 for 100mm. Fibers in monofilament retained their original as-produced strength to exposure temperature of 400℃. However, tensile strength of both monofilament composites approved to remarkably degrade due to interfacial reaction-induced flaws on the fiber surface after thermal exposure of 600℃. In this case, Weibull modulus of monofilament composites was 2.7 for β-SiC and 5.2 for γ-Al2O3 respectively.

  • PDF

황마섬유 보강 열경화성 복합재료의 기계적 특성 (Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites)

  • 이창훈;송재은;남원상;변준형;김병선;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

카본블랙류 미세입자 포집을 위한 유리섬유 필터백의 고분자 표면처리에 관한 연구 (A study on the Polymer surface treatment of GF-filter bag for collection of fine Particle like carbon black)

  • 이봉;최희락;문창권
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.55-59
    • /
    • 2008
  • In this paper, we have investigated on collection efficiency of fine particle of glass fiber-filter bag according to the surface treatment. The solution consisted of polytetrafluoroethylene(teflon), graphite powder, silicon resin and water was used as a basic surface treatment agent. Tensile strength of glass filter-bag increased with up to 3hrs and then decreased with surface treatment time. Tensile strength and initial modulus of the glass fiber-filter bag treated by iodine after basic surface treatment for 3hrs were lower than those of basic surface treatment for 3hrs, however collection efficiency and fracture strain were higher than those of basic surface treatment for 3hrs. Glass fiber-filter bag with lower initial modulus and more strain will be extend the durable period and the one treated by iodine after basic surface treatment 3or 3hrs is expected high collection efficiency of fine particle. This method makes it possible to manufacture glass fiber-filter bag of the optimum condition.

  • PDF

유리섬유 보강재를 이용한 재활용 아스팔트 혼합물의 물리적 특성에 관한 연구 (A Study on the Physical Properties of Recycled Asphalt Mixtures Using Glass Fiber Reinforcement)

  • 박기수;유평준
    • 한국도로학회논문집
    • /
    • 제20권4호
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS : Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS : The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.

예열처리된 응회암 시험편의 물성 변화 (Changes of Material Properties of Pre-heated Tuff Specimens)

  • 윤용균;김사현
    • 터널과지하공간
    • /
    • 제23권3호
    • /
    • pp.212-218
    • /
    • 2013
  • 풍화된 응회암 시험편을 모사하기 위하여 최고 예열온도를 200, 400, 600($^{\circ}C$)로 한 예열시험편을 제작하였다. 각 예열시험편에 대한 실내시험을 통해 비중, 흡수율, 탄성파속도, 일축압축강도, 압열인장강도, 탄성계수, 포아송비, 슬레이크 내구성 지수를 측정하였다. 암석에 열을 가하는 경우 물성의 열화가 발생하는 것으로 나타났으나 예외적으로 슬레이크 내구성 지수는 별로 영향을 받지 않는 것으로 평가되었다. P-파 속도와 일축압축강도, 압열인장강도, 탄성계수, 흡수율 간에는 상당한 상관성이 있는 것으로 해석되었으며, P-파 속도를 알면 일축압축강도, 압열인장강도, 탄성계수, 흡수율을 추정할 수 있는 회귀식을 도출하였다.

연신후 승온열처리한 PP filament의 역학적 성질에 관한 연구 (A Study On the Mechanical Properties of Isothermally Annealed after Elevated heating of drawn PP filaments)

  • 이은우
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.361-366
    • /
    • 2002
  • The change of mechanical properties of drawn PP filaments which was treated by isothermally annealed after elevated heating. Measurements were carried out with UTM for mechanical properties. Isothermally heat treatment were carried out $100^{\circ}C$, $120^{\circ}C$, $140^{\circ}C$ for 10min., 30min., 60min, in silicon oil bath. And isothermally heat treatment after elevated heating from $20^{\circ}C$ were carried out $100^{\circ}C$, $120^{\circ}C$, $140^{\circ}C$ for 10min., 30min., 60min., with heating rate of $1^{\circ}C/min$., $5^{\circ}C/min$., $10^{\circ}C/min$. From the results of this study, it found the following facts. Initial modulus and tensile strength were increased with increasing of annealed temperature and time. Also initial modulus of tensile strength of samples which were isothermally annealed after elevated heating from $20^{\circ}C$ were higher than those of isothermally annealed samples.

  • PDF

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

MMT(Montmorillonite)를 적용한 Chopped Strand Glass Fiber-Vinylester 복합재의 인장특성 연구 (A Study on Tensile Property of MMT (Montmorillonite) Reinforced Chopped Strand Glass Fiber/Vinylester Composites)

  • 정용화;구자호;이위로;이경엽
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, MMT/fiber/polymer composites were fabricated by impregnating chopped strand glass mat into a vinylester resin mixed with clay. Tensile tests has been performed by using a universal testing machine to determine the effect of MMT addition on the tensile properties of MMT/chopped strand glass fiber/vinylester composites. And some pictures which are magnified cross section of breaking parts are has been taken by using a FE-SEM to confirm the behavior at breaking. The contents ratio of MMT applied in the composites were 0.5, 1.0, 1.5, and 2.0 wt% respectively. It has been found that the tensile strength and elastic modulus of MMT/chopped strand glass fiber/vinylester composites were improved at a proper content of MMT. Tensile strength and elastic modulus were maximized at a content of 1.0 wt% due to most effective dispersion of MMT. On the contrary, the failure strain was increased as MMT content was increased.

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

카본 및 실리카 강화 복합재료의 고온 인장 특성 평가 (The Tensile Characteristics of Carbon and Silica Reinforced Composites Under Elevated Temperature)

  • 김종환;김재훈
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.49-57
    • /
    • 2003
  • 본 연구에서는 항공기 구조재로 활용되고 있는 카본/에폭시 복합재료와 기체 외부 열차단용 소재로 추천되고 있는 실리카/페놀 및 카본/페놀 복합재료 2종에 대하여 고온 환경하에서 인장시험을 행하였다. 고온용 스트레인게이지를 응용하여 각각의 복합재료에 대한 온도변화에 따른 인장강도, 탄성계수, 프와송비 같은 기계적 물성치를 도출하였으며, 복합재료 방향성에 따른 기계적 물성 및 인장 거동을 강화재 종류별로 비교 고찰하였다. 본 연구결과를 통하여 획득된 기초자료들은 항공기 구조재 및 열차단용 내열재료를 이용한 복합 구조재의 설계 및 해석에 응용되었다.