• Title/Summary/Keyword: tensile fracture

Search Result 1,416, Processing Time 0.03 seconds

A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys (Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

High Temperature Tensile Property of Transient Liquid Bonded Joints of Ni-base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 고온인장특성)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.106-113
    • /
    • 2000
  • Single crystallization behavior ad high temperature tensile properties of TLP bonded joints of Ni-base single crystal superalloy, CMSX-2 were investigated using MBF-80 and F-24 insert metals. CMSX-2 was bonded at 1523~1548K for 1.5~1.8ks in vacuum. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. Crystallographic orientation analyzed points over the bonded region possessed the almost same orientation across the joint interface and misorientation $\Delta^{\theta}$ was negligibly small in as-bonded and post-bond heat-treated situations. It was confirmed that single crystallization could be readily achieved during TLP bonding. The tensile strengths of all joints at elevated temperatures were equal to or greater than those of base metal the range of testing temperature between 923K and 1173K. The elongation and reduction of area in values were almost the same as those of base metal. SEM observation of the fracture surfaces of joints after tensile test revealed that the fracture surface indicated the similar morphologies each other, and that the fracture of joints occurred in the base metal in any cases.

  • PDF

Assessment of Residual Tensile Strength on Cast Iron Water Pipes (주철관의 잔존강도 평가에 관한 연구)

  • Bae, Cheol-Ho;Kim, Ju-Hwan;Kim, Jeong-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.867-874
    • /
    • 2006
  • The goal of this study is to assess cast iron pipes (CIPs) and present a residual tensile strength prediction model using pit characteristics and fracture toughness. The results is the followings. First, average pit depths of collected CIPs were in the range from 0.63 to 6.49 mm, loss of tensile strength compared with net metallic tensile strength were from -7.06 to 67.91 percent. Second, fracture toughness for NS-CR-1, NS-CR-2, and NS(2)-CR-1 were in the range from 62.85 to $89.39kgf/mm^2{\sqrt{mm}}$, and average of those samples was $73.69kgf/mm^2{\sqrt{mm}}$ on CIPs. Third, the models developed in this study by using pit characteristics and fracture toughness showed a little good correlation for measured residual tensile strength, and the results will be expected to help for water utilities to manage CIPs in the aspect of rehabilitation and assessment of structural safety on CIPs.

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths (다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

On the reinforcement of straw pulp

  • Y. Yu;Kettunen;H. Paulapuro
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.232-238
    • /
    • 1999
  • The reinforcement of wheat straw pulp sheets with softwood kraft was studied, with special emphasis on the impact of softwood kraft beating and the proportion softwood kraft in straw pulp. the reinforcement was evaluated by measuring the tensile stiffness sand in-plane fracture behavior of samples. the results were compared with a mechanical pulp (TMP) and with a hardwood birch kraft, both reinforced with the same softwood kraft. Wheat straw pulp forms strong interfiber bonds. Therefore, its tensile stiffness and tensile strength are larger than TMP used. In-plane tear tests showed that a pure wheat straw pulp sheet has low fracture energy and correspondingly a narrow fracture process zone. The fracture energy of the reinforced straw sheets was found to increase linearly with the proportion of both unbeaten and beaten softwood pulps.

Tension Behavior of Nicalon/CAS Ceramic Composites (Nicalon/CAS 세라믹 복합재료의 인장특성)

  • Kim, Jeong-Guk;Kim, Weon-Kyong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.232-237
    • /
    • 2004
  • The tension behavior of Nicalon/CAS glass-ceramic matrix composites was investigated. Infrared (IR) thermography was employed for two different types of $Nicalon^{TM}/CAS$ composites, i.e., cross-ply and unidirectional specimens. During tensile testing, an IR camera was used for in-situ monitoring of progressive damages of $Nicalon^{TM}/CAS$ samples. The IR camera provided the temperature changes during tensile testing. Microstructural characterization using scanning electron microscopy (SEM) was performed to investigate the fracture mechanisms of $Nicalon^{TM}/CAS$ composites. In this investigation, the thermographic NDE technique was used to facilitate a better understanding of the fracture mechanisms of the $Nicalon^{TM}/CAS$ composites during tensile testing.

  • PDF