• Title/Summary/Keyword: tensile fracture

Search Result 1,417, Processing Time 0.024 seconds

A Study on the Nondestructive Evaluation of Material Properties (비파괴적인 재료물성치 평가에 관한 연구)

  • Kim Hyung-Ick;Kim Jeong-Pyo;Seok Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.130-136
    • /
    • 2005
  • The nondestructive evaluation system consisted of a ball indentation tester and a ultrasonic tester was developed to evaluate material properties. The relations between the parameters from test results using the system and the results of tensile and fracture toughness tests were investigated. The fracture toughness and tensile properties could be determined using the system. Some metallic materials were experimented to predict the fracture toughness and tensile properties and verify the relations between them. The predicted fracture toughness and tensile properties show a good agreement with the results obtained by conventional tests. It is found that the material properties and the material degradation can be evaluated using the nondestructive evaluation system.

Fracture mode of friction spot joined Aluminum alloy used in automobile industry (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 파단특성)

  • Kim, Teuk-Gi;Cheon, Chang-Geun;Rajesh, S.R.;Kim, Hong-Ju;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.316-318
    • /
    • 2007
  • Friction Spot Joining(FSJ) has a strong potential for aluminum alloy joining in automobile industries. The present paper focuses on the attempt to optimize the FSJ process for lap joining of A5052-H32 and A6061-T6 aluminum alloys. For A5052 maximum tensile shear strength has been observed for a tool rotating speed of 800rpm and for A6061 at 1000 rpm. Study on fracture modes of the tensile tested specimens of both A5052-H32 and A6061-T6 revealed, for high tensile strength values, plug fracture mode and lower tensile values, shear fracture mode. Above 2000 rpm distortion of the base metal, beside the tool shoulder was larger and plug fracture mode has been observed.

  • PDF

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Effects of Extracts from Cnidium officinale and Angelica sinensis on Bone Fusion in Mice with Femoral Fracture (당귀천궁복합물이 대퇴골 골절 동물모델에서 골 유합에 미치는 영향)

  • Sang Woo Kim;Min-Seok Oh
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • Objectives The purpose of this study is to evaluate the fracture healing effect of extracts from Cnidium officinale and Angelica sinensis (CO/AS) in mice with femoral fracture. Methods C57BL/6 mice were randomly divided into normal, control (phospate-bufferd saline), positive control (tramadol), CO/AS extract 40 mg/kg and 80 mg/kg. By using Collier's method, all groups except normal group went through femoral fracture. Aspartate aminotransferase (AST), alanine transferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and creatinine were measured to evaluate the safety of CO/AS. Hematoxylin & eosin, Safranin O staining, x-ray, tensile and compressive force were conducted to assess the effect of CO/AS on fracture. Results The liver function test showed AST, ALT and LDH in CO/AS at 14th and 28th days were not significantly different compared with control group. The renal function test showed BUN in CO/AS at 14th days and BUN and creatinine in CO/AS at 28th days were significantly decreased compared with control group. The morphological & histological analysis and x-ray showed that CO/AS promoted cartilage and callus formation process compared with control group. The tensile and compressive forces test showed tensile in CO/AS 40 mg/kg and tensile & compressive forces in CO/AS 80 mg/kg were significantly increased compared with control group. Conclusions CO/AS extract showed the possibility that it promotes early fracture union and increases bone tensile and compressive strength, while does not have hepatotoxicity. In conclusion, CO/AS has a potential to promote healing of bone fracture and this study warranted the clinical usage of CO/AS at bone fracture.

Influence of Rock Inhomogeneity on the Static Tensile Strength of Rock (암석의 정적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • The fracture processes under static tensile loading were simulated using a proposed numerical simulation method, based on finite element method and fracture mechanism, and analyzed to verify an influence of rock inhomogeneity on static tensile strength. Static tensile strengths for the specimen models with different spatial microscopic tensile strength when m=5 and m=50 were estimated. These analyses revealed that the static tensile strength becomes closer to the mean microscopic tensile strength at a higher uniformity coefficient and the scatter of the strength data decreases in increasing the uniformity coefficients. Therefore, it could be concluded that rock inhomogeneity has an effect on static tensile strength.

Fracture Toughnesses of Mortar and Concrete Through the Splitting Tensile Tests with Various Sizes of Specimens (크기가 다른 원형공시체의 할렬인장 실험을 통한 모르타르와 콘크리트의 파괴인성연구)

  • 김진근;구헌상;임선택
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.89-95
    • /
    • 1990
  • Possibility for the evaluation of fracture properties of mortar and concrete by splitting tensile test was stud¬ied. Splitting tensile tests were conducted to obtain the fracture loads for several sizes of cylindrical specimens of mortar and concrete with initial notch. From the results, fracture energy and fracture toughness by SEL were obtained and compared with the values by Rooke and Cartwright, and r.E.Moo The values by SEL method converged effectively. SEL method was shown to be a good method to obtain fracture properties of mortar and concrete.

A study on the tensile strength of flow-soldered joint using low residue flux (저잔사 플럭스를 사용한 플로 솔더링부의 인장특성 연구)

  • 장인철;최명기;신영의;정재필;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.77-81
    • /
    • 1999
  • Through-hole PCB(Printed Circuit Board) was soldered by flow soldering process using cleaning or noncleaning fluxes. Preheating temperature and conveyor speed were changed in the range of 323∼413K and 0.3∼2m/min respectively. The soldered joints were tensile tested in order to evaluated bonding strength. As experimental results, relatively high tensile fracture load, 120∼140N, were obtained in case of preheating temperature of 383K, and conveyor speed was 0.6∼1.0 m/min. Fractured surfaces of higher tensile strength show some dimple area, while those of lower tensile fracture load show brittle fracture.

  • PDF

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.