• Title/Summary/Keyword: tensile energy

Search Result 1,272, Processing Time 0.022 seconds

Effect of the Calcium Nitrate Solution Treatment on the Tensile, Bending, and Shear Properties of Silk Fabric

  • Park, Su-Zin;Kang, Ji-Young;Seol, Da-Won;Yang, Hye-Min;Lee, Ji-Min;Ahn, Ye-Ji;Han, Seo-Young;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.14 no.6
    • /
    • pp.39-52
    • /
    • 2010
  • Interests in creating three-dimensionally designed fabric materials are growing rapidly in the sectors of the fashionable textiles with the creativity, new functions, and aesthetics. A number of finishing methods have been developed and proposed to add or create new functions and designs for silk fabrics. Due to the strong hydrogen bonds between the molecules of silk fibroins, the thermal treatment methods used in thermoplastic fiber processing, which can easily deform the synthetic filament fabrics to endow three-dimensional appearance to the fabrics, are not applicable to the silk fabric treatment. In order to modify the fine structure of silk fiber, neutral salt solution treatment methods have been suggested. In this study, the effect of the calcium nitrate solution on the physical and mechanical properties of silk fabrics was investigated by using the KES(Kawabata Evaluation System) equipment. Based on these findings, relationships between parameters, for example, the thickness and the compressional energy, the thickness and the compressional linearity, and the air permeability and the pore area statistical analysis were investigated. The relationships between the process parameters such as treatment temperature/time and the resulting fabric property parameters were also analyzed by using several SAS procedures.

Adhesion Properties of Moisture-Curable Polyurethane Hotmelt (습기경화형 폴리우레탄 핫멜트의 접착물성)

  • Kim, Jae-Beum;Chung, Kyung-Ho;Chun, Young-Sik;Jung, Jin-Soo;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1998
  • Isocyante terminated urethane prepolymers were synthesized by the reaction of 4,4'-dimethyl phenyldiisocyanate(MDI) and ester type polyols such as ethylene glycol/ butanediol adipate(EBA), neopentylglycol/butanediol adipate (NBA) and hexanediol adipate (HA) . All of the NCO-terminated urethane prepolymers are solid at room temperature, but they become mobile enough to be disposed onto a substrate upon heating about $80^{\circ}C$. Subsequently, they are solidified and cured through the reaction with moisture. Tensile behavior of the ore-thane hotmelt exhibits characteristic features depending on the type of polyol. The adhesive strength determined by single lap shear joint is higher in order of HA, NBA and EBA based ore thane hotmelt, which can be correlated with the magnitude of breaking energy of the cured films. The failure mode are cohesive for all cases and the adhesive strength increases as the test is performed faster. This indicates that the strength of the adhesive joint is primarily dependent upon the bulk properties of the adhesives.

  • PDF

Study on the Characteristics of the Hybrid Parylene Thin Films (하이브리드 타입 패럴린의 박막 특성 연구)

  • Cha, Gook-Chan;Lee, Ji-Yeon;Jung, Seong-Hee;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.298-308
    • /
    • 2010
  • The mechanical properties and surface characteristics of parylene thin film were improved using Xylydene-based dimers (DPX-C, DPX-D, and DPX-N). A single-parylene-C, D, N film and a hybrid chemical and physical parylene thin films in which two types are mixed were manufactured for each dimer by adjusting the deposition conditions and the thickness of the thin film by input. Parylene was deposited by chemical vapor deposition (CVD) and the thermal characteristics of the single thin film and the hybrid thin film were compared by thermal analysis. The mechanical properties of the thin films were characterized by tensile strength, elongation, and tear force tests, and the surface characteristics of the thin films were evaluated by contact angle and surface energy measurements. The hybrid chemical parylene thin film in which two types are mixed can complement the strengths and weaknesses of the different dimers, while the physical parylene thin film can freely adjust the thin film characteristics of the coated surface and the opposite surface.

Reactions and Properties of a RT-Castable PU Elastomer Modified with Oligomeric Diol (올리고머형 디올로 개질된 상온주형용 PU 엘라스토머의 반응과 물성)

  • Ahn, Won-Sool;Kim, Hoon-Seop
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2008
  • An oligomeric diol was utilized as a modifier for the reaction rate and mechanical properties of a RT-castable polyurethane elastomer. Both the reaction rate and the tensile strength of the blend samples, in which the modifier and the base resins were mixed with one-shot method, showed an exponential decrease as the increase of modifier concentration. Thermal analysis method of Kissinger was also effectively applied in the present study, showing good linearity in the plot of ln $(q/T^2_p)$ vs. $(1/T_p)$ and activation energy $E_a$ of 44.80 kJ/mol, which is similar to the general castable polyurethane. In the mechanical properties, remarkable decrease of strength was found by the addition of modifier concentration range up to about 20 phr, while characteristic elongation property of the elastomer, high elongation at lower strength, was observed over 20 phr of the modifier. Exponential decrease of the break strength of the blend sample exhibited that the mechanical properties of the blend might be considerably sensitive to the modifier concentration.

Variation in Microstructural Homogeneity and Mechanical Properties of Extruded Mg-5Bi Alloy Via Controlling Billet Shape (빌렛 형상 제어를 통한 Mg-5Bi 합금 압출재의 조직 균일도 및 기계적 물성 변화)

  • Jin, S.C.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2022
  • Extruded Mg-Bi binary alloys are known to have an undesirable bimodal grain structure containing a large amount of coarse unrecrystallized grains. Accordingly, to improve the microstructural homogeneity of extruded Mg-Bi alloys, it is necessary to promote the dynamic recrystallization (DRX) behavior during hot extrusion. An effective way to promote DRX is an increase in nucleation sites for DRX through a pre-deformation process before extrusion, such as cold pre-forging and hot pre-compression. However, the application of these pre-deformation processes increases the cost of final extruded Mg products because of an increase in energy consumption and decrease in productivity. Therefore, a low-cost new continuous process with high productivity is required to improve the microstructural homogeneity and mechanical properties of extruded Mg alloys without a drastic increase in the entire process cost. This study proposes a new extrusion method using an extrusion billet with a truncated cone shape (i.e., tapered billet) instead of a conventional extrusion billet with a cylindrical shape. When the hot extrusion of a Mg-5Bi alloy is conducted using the tapered billet, the DRX behavior during extrusion is considerably promoted. The DRX fraction and average grain size of the extruded alloy significantly increase and decrease from 65% to 91% and from 225 ㎛ to 49 ㎛, respectively. Consequently, the extruded Mg-5Bi alloy fabricated using the tapered billet has a finer homogeneous grain structure and higher tensile elongation than the extruded counterpart fabricated using the cylindrical billet.

Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향)

  • Park, Jeong Min;Jeon, Jin Myoung;Kim, Jung Gi;Seong, Yujin;Park, Sun Hong;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Shear Strengthening Effect by Deviator Location in Externally Post-tensioning Reinforcement (외적 포스트텐셔닝 보강에서 데비에이터의 위치에 따른 전단보강효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.3-10
    • /
    • 2018
  • This paper described the shear strengthening effect by deviator location in pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. Three reinforced concrete beams as control beam and eight post-tensioned beams using external steel rods were tested to fail in shear. The externally post-tensioning material was a steel rod of 22 mm diameter, and it had a 655 MPa yield strength and an 805 MPa tensile strength. Specimens depend on multiple variables, such as the number of deviators, location of deviator, and load pattern. The pre-damaged loads up to about 2/3 of ultimate shear capacities were applied to specimens using displacement control and the diagonal shear crack just occurred at these loading levels. And then, the post-tensioning up to when a strain of steel rod reaches about $2000{\mu}{\varepsilon}$ was continuously applied to beam. A displacement control was changed to a load control during post-tensioning. The post-tensioning resulted in increase of load-carrying capacity and restoration of existing deflection. Also, it prevented the existing diagonal cracks from excessively growing. Two deviators effectively improved the load capacity when compared with in case of test which one deviator at mid-span installed. When deviators were located near region which the diagonal crack occurred on, the strengthening impact by post-tensioning was greater.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.