하이브리드 타입 패럴린의 박막 특성 연구

Study on the Characteristics of the Hybrid Parylene Thin Films

  • Cha, Gook-Chan (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Lee, Ji-Yeon (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Jung, Seong-Hee (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Song, Jeom-Sik (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Lee, Suk-Min (Korea Orthophedics & Rehabilitation Engineering Center (KOREC))
  • 투고 : 2010.10.19
  • 심사 : 2010.12.07
  • 발행 : 2010.12.31

초록

패럴린 박막의 기계적 성질과 표면 특성을 개선하기 위해 Xylydene계 다이머(DPX-C, DPX-D, DPX-N)를 사용하여 각각의 다이머에 대한 증착 조건과 투입량에 따른 박막의 두께를 조절함으로써 단일 패럴린-C, D, N 박막과 두 가지 타입이 혼합된 하이브리드 타입의 화학적, 물리적 패럴린 박막을 제조하였다. 패럴린 증착은 화학기상증착법(chemical vapor deposition: CVD)을 이용하였으며, 열분석을 통해 단일 박막과 하이브리드 타입의 박막에 대한 열적 특성을 비교 분석하였다. 인장 강도와 신장율 그리고 인열력 시험을 통해 박막에 대한 기계적 물성을 알아보았으며, 접촉각과 표면 에너지를 측정하여 박막에 대한 표면 특성을 관찰하였다. 두 가지 타입이 혼합된 하이브리드 타입의 화학적 패럴린 박막은 서로 다른 다이머의 장단점을 상호 보완시켜 줄 수 있으며, 물리적 패럴린 박막은 기재에 코팅되는 면과 반대 면의 박막 특성을 자유롭게 조절할 수 있다.

The mechanical properties and surface characteristics of parylene thin film were improved using Xylydene-based dimers (DPX-C, DPX-D, and DPX-N). A single-parylene-C, D, N film and a hybrid chemical and physical parylene thin films in which two types are mixed were manufactured for each dimer by adjusting the deposition conditions and the thickness of the thin film by input. Parylene was deposited by chemical vapor deposition (CVD) and the thermal characteristics of the single thin film and the hybrid thin film were compared by thermal analysis. The mechanical properties of the thin films were characterized by tensile strength, elongation, and tear force tests, and the surface characteristics of the thin films were evaluated by contact angle and surface energy measurements. The hybrid chemical parylene thin film in which two types are mixed can complement the strengths and weaknesses of the different dimers, while the physical parylene thin film can freely adjust the thin film characteristics of the coated surface and the opposite surface.

키워드

참고문헌

  1. J. B. Fortin and T. M. Lu, "A Model for the Chemical Vapor Deposition of Parylene Thin Films", Chem. Mater., 14, 1945 (2002). https://doi.org/10.1021/cm010454a
  2. Seshadri Ganguli, Hemant Agrawal, Bin Wang, Jack F. McDonald, T. M. Lu, G. R. Yang and William N. Gill, "Improved growth and thermal stability of Parylene films", J. Vac. Sci. Technol., A 15, 3138 (1997).
  3. Kathleen M. Vaeth and Klavs F. Jensen, "Transition Metals for Delective Chemical Vapor Deposition of Parylene-Based Polymers", Chem. Mater., 12, 1305 (2000). https://doi.org/10.1021/cm990642p
  4. Eui Jung Kim, Sun Kyu Kim, Rae Hak Park and Joo Tae Kim, "Low Temperature Vapor Deposition of Parylene-N Films from [2,2]Paracyclophane", J. of the Korean Institude of Chemical Enginners, 36, 896 (1998).
  5. Soo-Jin Chua, Lin Ke, Ramadas Senthil Kumar and Keran Zhang, "Stabilization of electrode migration in polymer electroluminescent devices", Appl. Phys. Lett., 81, 1119 (2002). https://doi.org/10.1063/1.1498150
  6. D. T. Price, R. J. Gutmann and S. P. Murarka, "Damascene Copper Interconnects with Polymer ILDs", Thin Solid Films, 308, 523 (1997). https://doi.org/10.1016/S0040-6090(97)00479-3
  7. J. Lahann and R. Langer, "Novel Poly(p-xylylenes): Thin Films with Chemical and Optical Properties", Macromolecules, 35, 4380 (2002). https://doi.org/10.1021/ma011769e
  8. M. H-Alonso and T. J. McCarthy, " Chemical Surface Modification of Poly(p-xylylene) Thin Films", Langmuir, 20, 9184 (2004). https://doi.org/10.1021/la049025s
  9. O. Schafer and A. Greiner, "Soluble and Amorphous, Phenyl- Substituted Poly(1,4-xylylene) by Chemical Vapor Deposition", Macromolecules, 29, 6074 (1996). https://doi.org/10.1021/ma960681b
  10. V. A. Sochilin, A. V. Pebalk, V. I. Semenov and I. Ye. Kardash, "Sulphonated Poly-p-xylylene", Polym. Sci., 33, 1426 (1991).
  11. Holly L. Ricks, Umaran H. Choudry, Alan R. Marshall and Uwe H. F. Bunz, "Rod vs Coil: Molecular Weight Comparison of a Poly(dialkyl-p-phenyleneethynylene) with Its Reduced Poly(2,5- dialkyl-p-xylylene)", Macromolecules, 36, 1424 (2003). https://doi.org/10.1021/ma025630v
  12. Daniel Steiger, Moritz Ehrenstein, Christoph Weder and Paul Smith, "Synthesis and Properties of Poly(p-phenylene Octylene)", Macromolecules, 31, 1254 (1998). https://doi.org/10.1021/ma971373w
  13. Gorham, W. F., "A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylene", J. Polym. Eng. Sci. Part A-1, 4, 3027 (1966). https://doi.org/10.1002/pol.1966.150041209
  14. Gorham, W. F. and Niegisch, W. D., "Encyclopedia of Polymer Science and Technology", edited by Mark, H. F., Gayload, N. and Bikales, N. M., Interscience, New York (1971).
  15. Szwarc, M., "Poly-p-xylylene: Its Chemistry and Application in Co ating Technology", Polym. Eng. Sci., 16, 473 (1976). https://doi.org/10.1002/pen.760160703
  16. Taejin Lee, Junho Lee and Chinho Park, "Characterization of Parylene Deposition Process for the Passivation of Organic Light Emitting Diodes", Korean J. Chem. Eng., 19, 722 (2002). https://doi.org/10.1007/BF02699324