• Title/Summary/Keyword: temporal-spatial distribution

Search Result 646, Processing Time 0.025 seconds

The Suspended Sediment Change Detection of Imha Dam Using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 임하댐 부유사 변화탐지)

  • Jeong, Jong-Chul
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2007
  • The purpose of this study is to assess spatio-temporal variation of Imha Dam water quality according to suspended sediment algorithm using Landsat and SPOT 5 data. In order to learn synchronous suspended sediment concentrations(SSC) in Imha Dam waters, the satellite remote sensing data are analyzed. The key procedure of this research is that we should know the relationships between suspended sediment concentrations and satellite-detected reflectance. However, the SSC algorithm has the limitation that it must be compared calculated SSC with synchronous ground-truth data in the Dam water. Based upon the linear response from satellite-detected reflectance, SSC algorithm validated an efficient algorithm to estimate proportional factor and then derived an empirical equation far SSC estimations.

  • PDF

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

Characterization of Ozone Distributions in Pohang: Measurement Data during 2002~2006 (포항지역 오존농도의 분포 특성: 2002~2006년 측정자료)

  • Lim, Ho-Jin;Lee, Yong-Jik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • Temporal trends and spatial distributions of ozone concentrations in Pohang were investigated using data measured at 4 air quality monitoring stations (i.e., Daedo, Jukdo, Jangheung, and Desong) during 2002-2006. The monthly mean ozone concentrations were highest during April and June and decreased during July and August, which follows the typical trend in the Northeast Asia region. The high springtime ozone concentration might have been strongly influenced by the enhanced photochemical ozone production of accumulated precursors during the winter under increased solar radiations. In July and August, ozone levels were decreased by frequent and severe precipitation that caused lower mean monthly solar radiation and efficient wash-out of ozone precursors. This suggests that precipitation is extremely beneficial in the aspect of ozone pollution control. High ozone concentrations exceeding 80ppb dominantly occurred in May and June during the late afternoon between 16:00~17:00. Ozone concentrations were higher in Jangheung and Daesong relative to Daedo and Jukdo, whereas total oxidants $(O_3+NO_2)$ were higher in Jangheung and Daedo. In the suburban area of Daesong, ozone concentrations seem to be considerably higher than those in urban sites of Daedo and Jukdo due to lower ozone loss by NO titration with lower local NO level.

Temporal and Spatial Variations of SL/SST in the Korean Peninsula by Remote Sensing (원격탐사를 이용한 한반도 주변해역의 해수면/해수온의 시·공간변동 특성 연구)

  • Oh, Seung-Yeol;Jang, Seon-Woong;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.2
    • /
    • pp.333-345
    • /
    • 2012
  • NOAA/AVHRR, Topex/Poseidon, and Jason-1 data were used to analyze sea surface temperatures and thermal fronts in the North East Asia Seas. Temporal and spatial analyses were based on data from 1993 to 2008. The amplitude and phase for the annual mode on SL and SST were investigated with harmonic analysis. The geographical distribution of amplitudes for comparison of SL and SST are slightly reverse in southwest-northeast tilted direction. The time series analysis conducted on the entire researched area presented consistent pattern. Peak of Sea Level was presented 1~2 months after the peak of the surface sea temperature was shown. This explains that Sea Level change occurs after the generation of surface sea temperature change in sea. The Sobel edge detection method delineated four fronts. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

A GEOSENSOR FILTER FOR PROCESSING GEOSENSOR QUERIES ON DATA STREAMS

  • Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.119-121
    • /
    • 2008
  • Pattern matching is increasingly being employed in various researches as health care service, RFID-based system, facility management, and surveillance. Geosensor filter correlates a data stream to match specific patterns in distribution environments. In this paper, we present a geosensor query language to represent efficiently declarative geosensor query. Geosensor operators are proposed to use for fast query processing in terms of spatial and temporal area in distribution environments. We also propose a geosensor filter to match new query predicates into incoming stream predicates. Our filter can reduce the volume of transmission data and save power consumption of sensors. It can be utilized the stream data mining system to process in real-time various data as location, time, and geosensor information in distribution environments.

  • PDF

A Study on 3Dimensional Automatic Boundaries Detection on Medical Images or Radiation Therapy Planning (방사선 치료 계획 장치를 위한 의료 영상의 3차원적 자동 경계선 검출에 관한 연구)

  • Choi, Eun-Jin;Suh, Doug-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.172-175
    • /
    • 1997
  • Outline contour is detected firstly to simulate dose distribution in radiation therapy planning system. In this paper, we developed automatic contour detection system using temporal and spatial relationships of image sequences. The low level image analysis involves the use of directional gradient edge operators and Laplacian operator. The High level portion of algorithm uses a knowledge-based strategy that incorporates fuzzy resoning method.

  • PDF

Distribution Characteristics in the Habitat of Leptalina unicolor Population (은줄팔랑나비 개체군의 서식지 내 분포특성)

  • Hong, Sung-Jin;Yoon, Chun-Sik;Cheong, Seon-Woo
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1123-1131
    • /
    • 2019
  • In this study, we investigated the spatial range, distribution pattern, temporal appearance, sex ratio, seasonal pattern, and size of the population of Leptalina unicolor locally inhabiting the wetland protection area in the Jaeyaksan Mountain. We found that the butterfly was distributed across four areas at 750 m above sea level and in an area of 96,000 ㎡. in the southeastern slope of the mountain. The discontinuous distribution of the butterflies in the meadow. According to our survey conducted from 2012 to 2014, L. unicolor occurred in May (spring) and July (summer) each year, with the male population more than three times higher than that of the female population. The population size estimated using the mark and recapture method on the back of the hind wing in the two years was as follows: 877±502 and 1243±800 individuals in the spring and summer of 2012, respectively, and 783±429 and 506±365 individuals in the spring and summer of 2014, respectively, suggesting no specific seasonal pattern. The findings of this study are expected to be useful for the conservation of the populations and habitats of L. unicolor, which are currently distributed locally due to a decrease in population size.

Coexistence between Zostera marina and Zostera japonica in seagrass beds of the Seto Inland Sea, Japan

  • Sugimoto, Kenji;Nakano, Yoichi;Okuda, Tetsuji;Nakai, Satoshi;Nishijima, Wataru;Okada, Mitsumasa
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.45-53
    • /
    • 2017
  • Background: There have been many studies on the growth conditions of Zostera marina and Zostera japonica, but few studies have examined how spatial and temporal factors affect growth in established seagrass beds or the distribution range and shoot density. This study aims to clarify the factors that determine the temporal and spatial distribution of Zostera marina and Zostera japonica in the Seto Inland Sea east of Yamaguchi Prefecture. Methods: The study site is in Hiroshima Bay of the Seto Inland Sea, along the east coast of Yamaguchi Prefecture, Japan. We monitored by diving observation to confirm shoot density, presence or absence of both species and observed water temperature, salinity by sensor in study sites. Results: The frequency of occurrence of Zostera marina was high in all seasons, even in water depths of D.L. + 1 to -5 m ($80{\pm}34%$ to $89{\pm}19%$; mean ${\pm}$ standard deviation), but lower (as low as $43{\pm}34%$) near the breakwall, where datum level was 1 to 2 m, and it was further reduced in datum level -5 m and deeper. The frequency of occurrence of Zostera japonica was highest in water with a datum level of +1 to 0 m. However, in datum level of 0 m or deeper, it became lower as the water depth became deeper. Datum level +1 m to 0 m was an optimal water depth for both species. The frequency of occurrence and the shoot density of both species showed no negative correlation. In 2011, the daily mean water temperature was $10^{\circ}C$ or less on more days than in other years and the feeding damage by S. fuscescens in the study sites caused damage at the tips. Conclusions: We considered that the relationship between these species at the optimal water depth was not competitive, but due to differences in spatial distribution, Zostera marina and Zostera japonica do not influence each other due to temperature conditions and feeding damage and other environmental conditions. Zostera japonica required light intensity than Zostera marina, and the water depth played an important role in the distribution of both species.