• Title/Summary/Keyword: temporal feature

Search Result 317, Processing Time 0.029 seconds

Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning (GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지)

  • Zhou, Yu;Lee, Seungeun;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

STAGCN-based Human Action Recognition System for Immersive Large-Scale Signage Content (몰입형 대형 사이니지 콘텐츠를 위한 STAGCN 기반 인간 행동 인식 시스템)

  • Jeongho Kim;Byungsun Hwang;Jinwook Kim;Joonho Seon;Young Ghyu Sun;Jin Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.89-95
    • /
    • 2023
  • In recent decades, human action recognition (HAR) has demonstrated potential applications in sports analysis, human-robot interaction, and large-scale signage content. In this paper, spatial temporal attention graph convolutional network (STAGCN)-based HAR system is proposed. Spatioal-temmporal features of skeleton sequences are assigned different weights by STAGCN, enabling the consideration of key joints and viewpoints. From simulation results, it has been shown that the performance of the proposed model can be improved in terms of classification accuracy in the NTU RGB+D dataset.

Alzheimer progression classification using fMRI data (fMRI 데이터를 이용한 알츠하이머 진행상태 분류)

  • Ju Hyeon-Noh;Hee-Deok Yang
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.86-93
    • /
    • 2024
  • The development of functional magnetic resonance imaging (fMRI) has significantly contributed to mapping brain functions and understanding brain networks during rest. This paper proposes a CNN-LSTM-based classification model to classify the progression stages of Alzheimer's disease. Firstly, four preprocessing steps are performed to remove noise from the fMRI data before feature extraction. Secondly, the U-Net architecture is utilized to extract spatial features once preprocessing is completed. Thirdly, the extracted spatial features undergo LSTM processing to extract temporal features, ultimately leading to classification. Experiments were conducted by adjusting the temporal dimension of the data. Using 5-fold cross-validation, an average accuracy of 96.4% was achieved, indicating that the proposed method has high potential for identifying the progression of Alzheimer's disease by analyzing fMRI data.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Morphological variability of intertidal Eisenia arborea (Laminariales, Ochrophyta) at Punta Eugenia, Baja California Sur

  • Parada, Gloria M.;Riosmena-Rodriguez, Rafael;Martinez, Enrique A.;Hernandez-Carmona, Gustavo
    • ALGAE
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Water motion is one of the main drivers in morphological variability in species within de order Laminariales, and most of our current knowledge is based on subtidal populations. $Eisenia$ $arborea$ is a dominant kelp species in the North Pacific, widely distributed along the Baja California Peninsula from mid intertidal down to subtidal areas. This species presents great variability in the intertidal zone but it has not been yet evaluated such variability according to wave exposure. The present work also identifies the spatial / temporal variation, particularly respect to the presence of stipes without medulla (hollow stipes) a feature common among other brown seaweeds. We evaluated the effects of wave action in morphological variation of intertidal $Eisenia$ $arborea$ (Laminariales, Ochrophyta) at Punta Eugenia. The spatial and temporal variation sampling was surveyed between February, May, July, and August 2004 in the intertidal of Punta Eugenia, Baja California Sur. Our results have shown that exposed sites correlate with increased length and width of stipes as compared to more protected sites. Hollow stipes frequency changed more in association with temporal variation than with spatial heterogeneity suggesting nutrient limitation for thalli development. Our results suggest that $Eisenia$ $arborea$ compensate by morphological modifications the stress of living in the intertidal zone by showing larger stipes. Hollow stipes might be are also a mechanical adaptation to increase survival in high energy environments.

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Spatial-Temporal Scale-Invariant Human Action Recognition using Motion Gradient Histogram (모션 그래디언트 히스토그램 기반의 시공간 크기 변화에 강인한 동작 인식)

  • Kim, Kwang-Soo;Kim, Tae-Hyoung;Kwak, Soo-Yeong;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1075-1082
    • /
    • 2007
  • In this paper, we propose the method of multiple human action recognition on video clip. For being invariant to the change of speed or size of actions, Spatial-Temporal Pyramid method is applied. Proposed method can minimize the complexity of the procedures owing to select Motion Gradient Histogram (MGH) based on statistical approach for action representation feature. For multiple action detection, Motion Energy Image (MEI) of binary frame difference accumulations is adapted and then we detect each action of which area is represented by MGH. The action MGH should be compared with pre-learning MGH having pyramid method. As a result, recognition can be done by the analyze between action MGH and pre-learning MGH. Ten video clips are used for evaluating the proposed method. We have various experiments such as mono action, multiple action, speed and site scale-changes, comparison with previous method. As a result, we can see that proposed method is simple and efficient to recognize multiple human action with stale variations.

Visual Information Selection Mechanism Based on Human Visual Attention (인간의 주의시각에 기반한 시각정보 선택 방법)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.378-391
    • /
    • 2011
  • In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.

Analyzing Spatio-Temporal Variation of Groundwater Recharge in Jeju Island by using a Convolution Method (컨벌루션 기법을 이용한 제주도 지하수 함양량의 시공간적 변화 분석)

  • Shin, Kyung-Hee;Koo, Min-Ho;Chung, Il-Moon;Kim, Nam-Won;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.625-635
    • /
    • 2014
  • Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.

Impact of Sea Surface Scattering on Performance of QPSK (해면산란이 QPSK 성능에 미치는 영향)

  • Xue, Dandan;Seo, Chulwon;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1818-1826
    • /
    • 2014
  • Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.