• 제목/요약/키워드: temporal energy

검색결과 404건 처리시간 0.03초

진해만 서부해역의 하계 수질의 시간변동 특성 (Temporal Variation of Water Quality of the Western Chinhae Bay in Summer)

  • 조현서;이대인;윤양호;이문옥;김동명
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권1호
    • /
    • pp.13-21
    • /
    • 2004
  • 본 연구에서는 진해만 서부해역의 세 정점에서 2시간 간격으로 연속관측에 의해서 적조발생 전후의 수질변화를 모니터링하였다. 표ㆍ저층간에 수온차가 큰 시간에 저층의 용존산소가 최소를 나타내었고, 화학적 산소요구량은 세 정점 모두 표층에서 해역수질기준 II등급을 초과하였다. 용존무기질소 분포는 저층에서 유기물분해로 인한 재순환에 의해 고농도로 존재하였고, 표층에서는 상대적으로 낮았다. 존재형태별로는 표층에서는 암모니아가 대부분 차지하였고, 저층에서는 C2 정점에서는 질산질소가, C11과 C15 정점에서는 암모니아가 주종을 이루었다. 용존무기인은 C2정점의 표층에서 8월 12일 오후 4시에서 밤 8시 사이에 고농도를, 야간에 최소를 보여주었다. C11과 C15 정점에서는 표층과 저층의 차이가 컸으며, 아침이후 급격한 증가를 나타내었다. N/P 분석결과, 대부분의 시간대에서 질소가 생물성장의 제한인자가 될 가능성이 높았다. Chl-α 분포는 C2와 C11 정점에서는 극대층이 표층아래인 3∼5 m층에 형성되었고, 적조발생가능농도인 10mg/㎥을 초과하는 고농도를 나타냈다. C15정점의 극대층은 표층에서 나타났고 상대적으로 낮은 농도분포를 보였다. 이러한 Chl-α는 일사량이 강한 오후에 고농도를 형성해서 야간에도 높은 농도를 유지하다가 새벽에 최소분포를 나타냈고 아침이후 다시 증가하는 양상을 보였다. 적조가 관측된 C2 정점에서는 적조발생전에 영양염류가 증가했으며, 수온성층이 최대가 되는 시간대에 식물플랑크톤이 고농도로 집적하면서 용존무기질소를 특히, 질산질소를 급격히 소모하는 것으로 나타났다.

  • PDF

해양수리특성의 변화를 고려한 연속적 근역혼합거동 (Continuous Near-field Mixing with Variable Oceanic Conditions)

  • 강시환;김영도;이호진;김상익;한성대
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권4호
    • /
    • pp.12-20
    • /
    • 2001
  • 본 연구에서는 부력제트 혼합에 영향을 주는 인자들의 시계열자료를 이용하여 통계적 특성을 구하는 방법을 국내의 대표적인 하수방류시스템에 적용하여 기존 연구견과와 비교함으로써 이러한 연구방법의 필요성을 검토하였다. 마산만 수중확산관에 대한 63일간의 자료를 이용하여 선형플륨 방정식을 1500회 이상 적용하여 초기희석률, 근역구간 크기, 플륨상승고에 대한 빈도분포를 구한 결과, 초기희석률은 30~71의 범위를 보이며, 평균값은 34로 나타났으며, 이는 염분부족도를 이용한 현장희석률 관측견과와 유사하게 나타났다. 관역구간 길이는 5.4~36.2 m의 범위와 평균값 9.5 m, 플륨상승고는 8.1~10.2 m의 변위와 평균값 8.9 m의 결과를 나타내었다. 그러나 해당기간 중의 전체의 30~44 % 기간만이 각각의 근역특성들이 평균값 이상을 나타내므로, 해양방류시스템을 설계 및 해석함에 있어서 통계적 빈도해석에 의한 방류하수의 희석률과 혼합구간의 범위에 대한 파악이 매우 중요하다고 판단된다.

  • PDF

An Energy Efficient Multichannel MAC Protocol for QoS Provisioning in MANETs

  • Kamruzzaman, S.M.;Hamid, Md. Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.684-702
    • /
    • 2011
  • This paper proposes a TDMA-based multichannel medium access control (MAC) protocol for QoS provisioning in mobile ad hoc networks (MANETs) that enables nodes to transmit their packets in distributed channels. The IEEE 802.11 standard supports multichannel operation at the physical (PHY) layer but its MAC protocol is designed only for a single channel. The single channel MAC protocol does not work well in multichannel environment because of the multichannel hidden terminal problem. Our proposed protocol enables nodes to utilize multiple channels by switching channels dynamically, thus increasing network throughput. Although each node of this protocol is equipped with only a single transceiver but it solves the multichannel hidden terminal problem using temporal synchronization. The proposed energy efficient multichannel MAC (EM-MAC) protocol takes the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing nodes that are not involved in communications to go into power saving "sleep mode". We consider the problem of providing QoS guarantee to nodes as well as to maintain the most efficient use of scarce bandwidth resources. Our scheme improves network throughput and lifetime significantly, especially when the network is highly congested. The simulation results show that our proposed scheme successfully exploits multiple channels and significantly improves network performance by providing QoS guarantee in MANETs.

Identification of a neural pathway governing satiety in Drosophila

  • Min, Soohong;Chung, Jongkyeong
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.137-138
    • /
    • 2016
  • Satiety cues a feeding animal to cease further ingestion of food, thus protecting it from excessive energy gain. Impaired control of satiety is often associated with feeding-related disorders such as obesity. In our recent study, we reported the identification of a neural pathway that expresses the myoinhibitory peptide (MIP), critical for satiety responses in Drosophila. Targeted silencing of MIP neuron activity strikingly increased the body weight (BW) through elevated food intake. Similarly, genetic disruption of the gene encoding MIP also elevated feeding and BW. Suppressing the MIP pathway behaviorally transformed the satiated flies to feed similar to the starved ones, with augmented sensitivity to food. Conversely, temporal activation of MIP neuron markedly reduced the food intake and BW, and blunted the sensitivity of the starved flies to food as if they have been satiated. Shortly after termination of MIP neuron activation, the reduced BW reverted to the normal level along with a strong feeding rebound. Together our results reveal the switch-like role of the MIP pathway in feeding regulation by controlling satiety.

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

순환여과시스템에서 온도가 질산화 반응에 미치는 영향 (Effect of Temperature on Nitrification in a Recirculating Aquaculture System)

  • 박종호;이원호;연익준;조규석
    • 한국수산과학회지
    • /
    • 제37권1호
    • /
    • pp.13-17
    • /
    • 2004
  • The effects of temperature on nitrification of enriched nitrifiers were investigated by using kinetics and thermodynamics method through the batch test. Aquaculture recirculating water, which was sampled at Chung Cheong Buk-Do Inland Fisheries Research Institute, was analized to observe the characteristics of nitrification. Temporal variation of ammonium, nitrite and nitrate concentration was measured at batch experiments. Activation energy was calculated using Arrhenius equation with the oxidation rates of specific ammonium or nitrite ion. These oxidation rates were measured at temperature range of $6-35^{\circ}C$ and ammonium concentration range of 0.2-1.8 mg/L. Two distinct activation energy of Nitrosomonas sp. at temperature $6-15^{\circ}C\;and\;15-35^{\circ}C$ was 93.1 and 25.0 KJ/mol, respectively. Nitrate accumulation was observed at temperature over $15^{\circ}C.$

Long-Term Wind Resource Mapping of Korean West-South Offshore for the 2.5 GW Offshore Wind Power Project

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ko, Suk-Hwan
    • 한국환경과학회지
    • /
    • 제22권10호
    • /
    • pp.1305-1316
    • /
    • 2013
  • A long-term wind resource map was made to provide the key design data for the 2.5 GW Korean West-South Offshore Wind Project, and its reliability was validated. A one-way dynamic downscaling of the MERRA reanalysis meteorological data of the Yeongwang-Gochang offshore was carried out using WindSim, a Computational Fluid Dynamics based wind resource mapping software, to establish a 33-year time series wind resource map of 100 m x 100 m spatial resolution and 1-hour interval temporal resolution from 1979 to 2012. The simulated wind resource map was validated by comparison with wind measurement data from the HeMOSU offshore meteorological tower, the Wangdeungdo Island meteorological tower, and the Gochang transmission tower on the nearby coastline, and the uncertainty due to long-term variability was analyzed. The long-term variability of the wind power was investigated in inter-annual, monthly, and daily units while the short-term variability was examined as the pattern of the coefficient of variation in hourly units. The results showed that the inter-annual variability had a maximum wind index variance of 22.3% while the short-term variability, i.e., the annual standard deviation of the hourly average wind power, was $0.041{\pm}0.001$, indicating steady variability.

AN IN-SITU YOUNG'S MODULUS MEASUREMENT TECHNIQUE FOR NUCLEAR POWER PLANTS USING TIME-FREQUENCY ANALYSIS

  • Choi, Young-Chul;Yoon, Doo-Byung;Park, Jin-Ho;Kwon, Hyun-Sang
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.327-334
    • /
    • 2009
  • Elastic wave is one of the most useful tools for non-destructive tests in nuclear power plants. Since the elastic properties are indispensable for analyzing the behaviors of elastic waves, they should be predetermined within an acceptable accuracy. Nuclear power plants are exposed to harsh environmental conditions and hence the structures are degraded. It means that the Young's modulus becomes unreliable and in-situ measurement of Young's modulus is required from an engineering point of view. Young's modulus is estimated from the group velocity of propagating waves. Because the flexural wave of a plate is inherently dispersive, the group velocity is not clearly evaluated in temporal signal analysis. In order to overcome such ambiguity in estimation of group velocity, Wigner-Ville distribution as the time-frequency analysis technique was proposed and utilized. To verify the proposed method, experiments for steel and acryl plates were performed with accelerometers. The results show good estimation of the Young's modulus of two plates.

Radioactivity data analysis of 137Cs in marine sediments near severely damaged Chernobyl and Fukushima nuclear power plants

  • Song, Ji Hyoun;Kim, TaeJun;Yeon, Jei-Won
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.366-372
    • /
    • 2020
  • Using several accessible published data sets, we analyzed the temporal change of 137Cs radioactivity (per unit mass of sample) in marine sediments and investigated the effect of the water content of sediment on the 137Cs radioactivity, to understand the behavior of 137Cs present in marine environments. The 137Cs radioactivity in sediments decreased more slowly in the Baltic Sea (near the Chernobyl nuclear power plant) than in the ocean near the Fukushima Daiichi nuclear power plant (FDNPP). The 137Cs radioactivity in the sediment near the FDNPP tended to increase as the water content increased, and the water content decreased at certain sampling sites near the FDNPP for several years. Additionally, the decrease in the water content contributed to 51.2% of the average 137Cs radioactivity decrease rate for the same period. Thus, it may be necessary to monitor both the 137Cs radioactivity and the water content for marine sediments to track the 137Cs that was discharged from the sites of Chernobyl and Fukushima nuclear power plants where severe accidents occurred.

사각탱크 내부의 기포구동유동에 대한 동특성 연구 (Dynamic Analysis of Bubble-Driven Liquid Flows in a Rectangular Tank)

  • 김상문;이승재;김현동;김종욱;김경천
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.31-38
    • /
    • 2010
  • An experimental study to evaluate dynamic structures of flow and turbulence characteristics in bubble-driven liquid flow in a rectangular tank with a varying flow rate of compressed air is conducted. Liquid flow fields are measured by time-resolved particle image velocimetry (PIV) with fluorescent tracer particles to eliminate diffused reflections, and by an image intensifier to acquire enhanced clean particle images. Instantaneous vector fields are investigated by using the two frame cross-correlation function and bad vectors are eliminated by magnitude difference technique. By proper orthogonal decomposition (POD) analysis, the energy distributions of spatial and temporal modes are acquired. When Reynolds number increases, bubble-induced turbulent motion becomes dominant rather than the recirculating flow near the side wall. The total kinetic energy transferred to the liquid from the rising bubbles shows a nonlinear relation regarding the energy input because of the interaction between bubbles and free surface.