• Title/Summary/Keyword: temporal correlation

Search Result 745, Processing Time 0.024 seconds

A Skip-mode Coding for Distributed Compressive Video Sensing (분산 압축 비디오 센싱을 위한 스킵모드 부호화)

  • Nguyen, Quang Hong;Dinh, Khanh Quoc;Nguyen, Viet Anh;Trinh, Chien Van;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.257-267
    • /
    • 2014
  • Distributed compressive video sensing (DCVS) is a low cost sampling paradigm for video coding based on the compressive sensing and the distributed video coding. In this paper, we propose using a skip-mode coding in DCVS under the assumption that in case of high temporal correlation, temporal interpolation can guarantee sufficiently good quality of nonkey frame, therefore no need to transmit measurement data in such a nonkey frame. Furthermore, we extend it to use a hierarchical structure for better temporal interpolation. Simulation results show that the proposed skip-mode coding can save the average subrate of whole video sequence while the PSNR is reduced only slightly. In addition, by using the proposed scheme, the computational complexity is also highly decreased at decoder on average by 43.75% for video sequences that have strong temporal correlation.

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.

Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation (Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템)

  • Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1066-1074
    • /
    • 2014
  • In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.

VIDEO INPAINTING ALGORITHM FOR A DYNAMIC SCENE

  • Lee, Sang-Heon;Lee, Soon-Young;Heu, Jun-Hee;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.114-117
    • /
    • 2009
  • A new video inpainting algorithm is proposed for removing unwanted objects or error of sources from video data. In the first step, the block bundle is defined by the motion information of the video data to keep the temporal consistency. Next, the block bundles are arranged in the 3-dimensional graph that is constructed by the spatial and temporal correlation. Finally, we pose the inpainting problem in the form of a discrete global optimization and minimize the objective function to find the best temporal bundles for the grid points. Extensive simulation results demonstrate that the proposed algorithm yields visually pleasing video inpainting results even in a dynamic scene.

  • PDF

Using the fusion of spatial and temporal features for malicious video classification (공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구)

  • Jeon, Jae-Hyun;Kim, Se-Min;Han, Seung-Wan;Ro, Yong-Man
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.365-374
    • /
    • 2011
  • Recently, malicious video classification and filtering techniques are of practical interest as ones can easily access to malicious multimedia contents through the Internet, IPTV, online social network, and etc. Considerable research efforts have been made to developing malicious video classification and filtering systems. However, the malicious video classification and filtering is not still being from mature in terms of reliable classification/filtering performance. In particular, the most of conventional approaches have been limited to using only the spatial features (such as a ratio of skin regions and bag of visual words) for the purpose of malicious image classification. Hence, previous approaches have been restricted to achieving acceptable classification and filtering performance. In order to overcome the aforementioned limitation, we propose new malicious video classification framework that takes advantage of using both the spatial and temporal features that are readily extracted from a sequence of video frames. In particular, we develop the effective temporal features based on the motion periodicity feature and temporal correlation. In addition, to exploit the best data fusion approach aiming to combine the spatial and temporal features, the representative data fusion approaches are applied to the proposed framework. To demonstrate the effectiveness of our method, we collect 200 sexual intercourse videos and 200 non-sexual intercourse videos. Experimental results show that the proposed method increases 3.75% (from 92.25% to 96%) for classification of sexual intercourse video in terms of accuracy. Further, based on our experimental results, feature-level fusion approach (for fusing spatial and temporal features) is found to achieve the best classification accuracy.

Permitted Limit Setting Method for Data Transmission in Wireless Sensor Network (무선 센서 네트워크에서 데이터 전송 허용범위의 설정 방법)

  • Lee, Dae-hee;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.574-575
    • /
    • 2018
  • The generation of redundant data according to the spatial-temporal correlation in a wireless sensor network that reduces the network lifetime by consuming unnecessary energy. In this paper, data collection experiment through the particulate matter sensor is carried out to confirm the spatial-temporal data redundancy and we propose permitted limit setting method for data transmission to solve this problem. In the proposed method, the data transmission permitted limit is set by using the integrated average value in the cluster. The set permitted limit reduces the redundant data of the member node and it is shows that redundant data reduction is possible even in a variable environment of collected data by resetting the permitted limit in the cluster head.

  • PDF

Effect of Array Configurations on the Performance of GNSS Interference Suppression

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.884-893
    • /
    • 2008
  • This paper analyzes, through simulations, GNSS interference mitigation performance against wideband and narrowband interferences by using spatial-temporal adaptive processing(STAP). The mathematical analysis results demonstrate that the array configuration has a considerable effect on the spatial-temporal correlation function. Based on the results, different array configurations are presented to evaluate and observe the effect on interference mitigation. The analysis results are further assessed through simulations.

A Simulation Study on Queueing Delay Performance of Slotted ALOHA under Time-Correlated Channels

  • Yoora Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.43-51
    • /
    • 2023
  • Slotted ALOHA (S-ALOHA) is a classical medium access control protocol widely used in multiple access communication networks, supporting distributed random access without the need for a central controller. Although stability and delay have been extensively studied in existing works, most of these studies have assumed ideal channel conditions or independent fading, and the impact of time-correlated wireless channels has been less addressed. In this paper, we investigate the queueing delay performance in S-ALOHA networks under time-correlated channel conditions by utilizing a Gilbert-Elliott model. Through simulation studies, we demonstrate how temporal correlation in the wireless channel affects the queueing delay performance. We find that stronger temporal correlation leads to increased variability in queue length, a larger probability of having queue overflows, and higher congestion levels in the S-ALOHA network. Consequently, there is an increase in the average queueing delay, even under a light traffic load. With these findings, we provide valuable insights into the queueing delay performance of S-ALOHA networks, supplementing the existing understanding of delay in S-ALOHA networks.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.