• Title/Summary/Keyword: temporal clustering

Search Result 122, Processing Time 0.029 seconds

Motion Vector Recovery Scheme for H.264/AVC (H.264/AVC을 위한 움직임 벡터 복원 방법)

  • Son, Nam-Rye
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.29-37
    • /
    • 2008
  • To transmit video bit stream over low bandwidth such as wireless channel, high compression algorithm like H.264 codec is exploited. In transmitting high compressed video bit-stream over low bandwidth, packet loss causes severe degradation in image quality. In this paper, a new algorithm for recovery of missing or erroneous motion vector is proposed. Considering that the missing or erroneous motion vectors in blocks are closely correlated with those of neighboring blocks. Motion vector of neighboring blocks are clustered according to average linkage algorithm clustering and a representative value for each cluster is determined to obtain the candidate motion vector sets. As a result, simulation results show that the proposed method dramatically improves processing time compared to existing H.264/AVC. Also the proposed method is similar to existing H.264/AVC in terms of visual quality.

Automatic Change Detection Using Unsupervised Saliency Guided Method with UAV and Aerial Images

  • Farkoushi, Mohammad Gholami;Choi, Yoonjo;Hong, Seunghwan;Bae, Junsu;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1067-1076
    • /
    • 2020
  • In this paper, an unsupervised saliency guided change detection method using UAV and aerial imagery is proposed. Regions that are more different from other areas are salient, which make them more distinct. The existence of the substantial difference between two images makes saliency proper for guiding the change detection process. Change Vector Analysis (CVA), which has the capability of extracting of overall magnitude and direction of change from multi-spectral and temporal remote sensing data, is used for generating an initial difference image. Combined with an unsupervised CVA and the saliency, Principal Component Analysis(PCA), which is possible to implemented as the guide for change detection method, is proposed for UAV and aerial images. By implementing the saliency generation on the difference map extracted via the CVA, potentially changed areas obtained, and by thresholding the saliency map, most of the interest areas correctly extracted. Finally, the PCA method is implemented to extract features, and K-means clustering is applied to detect changed and unchanged map on the extracted areas. This proposed method is applied to the image sets over the flooded and typhoon-damaged area and is resulted in 95 percent better than the PCA approach compared with manually extracted ground truth for all the data sets. Finally, we compared our approach with the PCA K-means method to show the effectiveness of the method.

Analysis of Pattern Change of Real Transaction Price of Apartment in Seoul (서울시 아파트 실거래가의 변화패턴 분석)

  • Kim, Jung Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This study is to analyze impact of geography and timing on the real transactions prices of apartment complexes in Seoul using data provided by the Ministry of Land, Infrastructure and Transport. The average real transactions and location data of apartment complex was combined into the GIS data. First, the pattern of apartment real transaction price change by period and by area was analyzed by kriging, the one of the spatial interpolation technique. Second, to analyze the pattern of apartment market price change by administrative district(administrative 'Dong' unit), the average of market price per unit area was calculated and converted to Moran I value, which was used to analyze the clustering level of the real transaction price. Through the analysis, spatial-temporal distribution pattern can be found and the type of change can be forecasted. Therefore, this study can be referred as of the base data research for the housing or local policies. Also, the regional unbalanced apartment price can be presented by analyzing the vertical pattern of the change in the time series and the horizontal pattern of the change based on GIS.

Impact of Road Traffic Characteristics on Environmental Factors Using IoT Urban Big Data (IoT 도시빅데이터를 활용한 도로교통특성과 유해환경요인 간 영향관계 분석)

  • Park, Byeong hun;Yoo, Dayoung;Park, Dongjoo;Hong, Jungyeol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.130-145
    • /
    • 2021
  • As part of the Smart Seoul policy, the importance of using big urban data is being highlighted. Furthermore interest in the impact of transportation-related urban environmental factors such as PM10 and noise on citizen's quality of life is steadily increasing. This study established the integrated DB by matching IoT big data with transportation data, including traffic volume and speed in the microscopic Spatio-temporal scope. This data analyzed the impact of a spatial unit in the road-effect zone on environmental risk level. In addition, spatial units with similar characteristics of road traffic and environmental factors were clustered. The results of this study can provide the basis for systematically establishing environmental risk management of urban spatial units such as PM10 or PM2.5 hot-spot and noise hot-spot.

A Heuristic Method of In-situ Drought Using Mass Media Information

  • Lee, Jiwan;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.168-168
    • /
    • 2020
  • This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.

  • PDF

Proposal of Analysis Method for Biota Survey Data Using Co-occurrence Frequency

  • Yong-Ki Kim;Jeong-Boon Lee;Sung Je Lee;Jong-Hyun Kang
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • The purpose of this study is to propose a new method of analysis focusing on interconnections between species rather than traditional biodiversity analysis, which represents ecosystems in terms of species and individual counts such as species diversity and species richness. This new approach aims to enhance our understanding of ecosystem networks. Utilizing data from the 4th National Natural Environment Survey (2014-2018), the following eight taxonomic groups were targeted for our study: herbaceous plants, woody plants, butterflies, Passeriformes birds, mammals, reptiles & amphibians, freshwater fishes, and benthonic macroinvertebrates. A co-occurrence frequency analysis was conducted using nationwide data collected over five years. As a result, in all eight taxonomic groups, the degree value represented by a linear regression trend line showed a slope of 0.8 and the weighted degree value showed an exponential nonlinear curve trend line with a coefficient of determination (R2) exceeding 0.95. The average value of the clustering coefficient was also around 0.8, reminiscent of well-known social phenomena. Creating a combination set from the species list grouped by temporal information such as survey date and spatial information such as coordinates or grids is an easy approach to discern species distributed regionally and locally. Particularly, grouping by species or taxonomic groups to produce data such as co-occurrence frequency between survey points could allow us to discover spatial similarities based on species present. This analysis could overcome limitations of species data. Since there are no restrictions on time or space, data collected over a short period in a small area and long-term national-scale data can be analyzed through appropriate grouping. The co-occurrence frequency analysis enables us to measure how many species are associated with a single species and the frequency of associations among each species, which will greatly help us understand ecosystems that seem too complex to comprehend. Such connectivity data and graphs generated by the co-occurrence frequency analysis of species are expected to provide a wealth of information and insights not only to researchers, but also to those who observe, manage, and live within ecosystems.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

Design and Implementation of a Spatial Data Mining System (공간 데이터 마이닝 시스템의 설계 및 구현)

  • Bae, DUck-Ho;Baek, Ji-Haeng;Oh, Hyun-Kyo;Song, Ju-Won;Kim, Sang-Wook;Choi, Myoung-Hoi;Jo, Hyeon-Ju
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.119-132
    • /
    • 2009
  • Owing to the GIS technology, a vast volume of spatial data has been accumulated, thereby incurring the necessity of spatial data mining techniques. In this paper, we propose a new spatial data mining system named SD-Miner. SD-Miner consists of three parts: a graphical user interface for inputs and outputs, a data mining module that processes spatial mining functionalities, a data storage model that stores and manages spatial as well as non-spatial data by using a DBMS. In particular, the data mining module provides major data mining functionalities such as spatial clustering, spatial classification, spatial characterization, and spatio-temporal association rule mining. SD-Miner has own characteristics: (1) It supports users to perform non-spatial data mining functionalities as well as spatial data mining functionalities intuitively and effectively; (2) It provides users with spatial data mining functions as a form of libraries, thereby making applications conveniently use those functions. (3) It inputs parameters for mining as a form of database tables to increase flexibility. In order to verify the practicality of our SD-Miner developed, we present meaningful results obtained by performing spatial data mining with real-world spatial data.

  • PDF

A Study on Chaff Echo Detection using AdaBoost Algorithm and Radar Data (AdaBoost 알고리즘과 레이더 데이터를 이용한 채프에코 식별에 관한 연구)

  • Lee, Hansoo;Kim, Jonggeun;Yu, Jungwon;Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • In pattern recognition field, data classification is an essential process for extracting meaningful information from data. Adaptive boosting algorithm, known as AdaBoost algorithm, is a kind of improved boosting algorithm for applying to real data analysis. It consists of weak classifiers, such as random guessing or random forest, which performance is slightly more than 50% and weights for combining the classifiers. And a strong classifier is created with the weak classifiers and the weights. In this paper, a research is performed using AdaBoost algorithm for detecting chaff echo which has similar characteristics to precipitation echo and interrupts weather forecasting. The entire process for implementing chaff echo classifier starts spatial and temporal clustering based on similarity with weather radar data. With them, learning data set is prepared that separated chaff echo and non-chaff echo, and the AdaBoost classifier is generated as a result. For verifying the classifier, actual chaff echo appearance case is applied, and it is confirmed that the classifier can distinguish chaff echo efficiently.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.