• 제목/요약/키워드: templating

검색결과 68건 처리시간 0.027초

구형 메조포어 MCM-41의 합성에 관한 연구 (A Study on the Synthesis of Spherical Mesoporous MCM-41)

  • 유성구;이두형;서길수;이태진
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1096-1098
    • /
    • 1999
  • MCM-41형의 메조포러스 구형 실리카 재료를 염기성 조건에서 양이온 계면활성제를 templating species로 사용하여 합성하였다. 본 실험에서 사용한 계면활성제로는 octyltrimetylammonium bromide, dodecyltrimetylammonium bromide, cetyltrimethylammonium bromide, octadecyltrimethyammonium bromide 및 cetylpyridium bromide이었다. 구형 MCM-41의 비표면적은 $1500m^2/g$나 되었으며 계면활성제의 알킬 사슬의 길이가 길어질수록 기공 크기는 증가하였다.

  • PDF

콜로이달 템플레이팅 기술을 통한 준정렬된 다공성 반구구조의 $SnO_2$ 제작과 가스 센서로의 응용 (Preparation of Quasi-ordered Hollow $SnO_2$ Hemispheres Using Colloidal Templating Route and Its Application to Gas Sensors)

  • 장영은;양대진;김동훈;조남규;김호기;김일두
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.282-282
    • /
    • 2008
  • Quasi-ordered arrays of hollow $SnO_2$ hemispheres were prepared by utilizing the colloidal templating route and RF-sputtering methods. Hollow $SnO_2$ hemispheres with shell thickness of 20nm exhibited an uniform continuity and open porosity, resulting in high gas sensitivity due to enhanced surface area as well as reduced interfacial effects. Multilayered hollow $SnO_2$ hemispheres and hollow $SnO_2$ hemispheres with controlled wall thickness were fabricated by controlling processing steps.

  • PDF

Synthesis and Characterization of Co-Surfactant Templated Mesoporous Materials with Enhanced Hydrothermal Stability

  • Kim Geon-Joong;Kim Hyun-Seok;Ko Yoon Soo;Kwon Yong Ku
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.499-505
    • /
    • 2005
  • Ordered mesoporous materials with a hydrothermally-stable, protozeolitic framework were prepared by exploring the direct conversion of inorganic species based on co-surfactant templating systems. To confer hydrothermal stability on the mesoporous aterials, the organic-inorganic hybrids were heat-treated in strongly basic media. Co-surfactant templating systems of cetyltrimethylammonium bromide [$C_{16}H_{13}(CH_{3})_{3}$NBr, CTAB] with 1,3,5-trim­ethylbenzene (TMB) or a nonionic block copolymer of poly(ethylene oxide )-b-poly(propylene oxide )-b-poly(ethyl­ene oxide) ($EO_{20}PO_{70}EO_{20}$) were employed to improve the hydrothermal stability of the organic-inorganic self-assembly during the solid rearrangement process of the inorganic species. The mesoscopic ordering of the pore structure and geometry was identified by X-ray diffraction, small angle neutron scattering and electron microscopy.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • 장호원;문희규;김도홍;심영석;윤석진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating

  • Lim, Dongwook;Park, Taesoon;Choi, Yeji;Oh, Euntaek;Shim, Snag Eun;Baeck, Sung-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.148-154
    • /
    • 2020
  • Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.