• Title/Summary/Keyword: temperatures

Search Result 14,807, Processing Time 0.044 seconds

Studies on the Chilling Injury of Rice Seedlings III. Possibility of Low-Temperature Hardening (수도의 유묘기 냉해에 관한 연구 III. 유묘의 저온경화 가능성 검토)

  • Kwon, Y.W.;Ahn, M.B.;Oh, Y.J.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.3
    • /
    • pp.21-25
    • /
    • 1979
  • To evaluate the possibility of hardening of rice seedlings to chilling injury by low temperature conditioning for improvement of nursery temperature management a chilling sensitive new variety Tongil from Indica \times Japonica cross and a chilling tolerant Japonica variety Jinheung were reared by the 3rd leaf-stage in a day $30^{\circ}C/night\; 20^{\circ}C$ growth chamber, and were subjected to temperature conditioning for hardening against chilling injury for 6 days. Then the seedlings conditioned and unconditioned were chilled in a day and night $8^{\circ}C$ chamber for 2, 4, 6, or 8 days long and returned to the day and night $30^{\circ}C/night\; 20^{\circ}C$ condition for development of chilling injuries. Survival rate after chilling injury development of the variety Tongil showed distinct effect of hardening, i. e. the unhardened-25 % survival, the hardened by a gradual drop of temperature regime $(30^{\circ}C/20^{\circ}C\rightarrow24^{\circ}C/14^{\circ}C\rightarrow18^{\circ}C/12^{\circ}C\rightarrow8^{\circ}C)4 -59% survival and the hardened. by repeated brief exposure (4hrs. to 6hrs.) to $8^{\circ}C$ shock-89% survival against chilling of $8^{\circ}C$ for 4 days long. The variety Jinheung survived even against 8 days chilling at $8^{\circ}C$ C, but the discoloration rate of leaves due to chilling showed noticeably the hardening effect as repeated shock was much better than the gradually lowering temperatures.

  • PDF

Optimal Larval Density and Low Temperature Storage Conditions for Rearing of Protaetia brevitarsis (Coleoptera: Cetoniidae) using a Fermented Mulberry Sawdust-base Diet (뽕나무발효톱밥을 이용한 흰점박이꽃무지(딱정벌레목: 꽃무지과) 유충 사육에서 적정 사육밀도 및 저온처리 조건)

  • Ju-Rak, Lim;Hyung-Cheol, Moon;Na-Young, Park;Sang-Sik, Lee;Woong, Kim;Chang-Hak, Choi;Hee-Jun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • We raised the white-spotted flower chafer, Protaetia brevitarsis seulensis, from the larvae stage using a fermented mulberry sawdust-base diet at 25℃ and 16:8 h light:dark photoperiod. First, we determined the optimal density of the neonate larvae to be introduced into a rearing box (543 × 363 × 188 mm). The survival rates of the larvae were higher than 80% at 90 days after rearing at 100-175 larval densities but reduced by more than 10% at 200 larval density. The larval weights at 100 to 150 larval densities were similar; however, the weights at 175 and 200 larval densities were lower than those at 100 larval densities, indicating that the rate of weight gain increased under lower density. Based on these results, we inferred that 100-150 larvae was the optimal density. Second, we investigated the storage conditions of the last instar larvae under low temperatures. Four weight groups (1.8-2.0, 2.0-2.3, 2.3-2.5, and 2.5 g) of larvae were stored at 4, 8, and 10℃, respectively. All the larvae at 4℃ died 70 days after storage, whereas 80% of the larvae survived at 8℃ 70 days after storage, indicating that high larval weight was associated with high survival rates. The adults that emerged from larvae with more than 2.3 g and stored for up to 50 days at 4℃ laid few eggs. However, the adults that emerged from all larval weight groups stored for 70 days at 8℃ and 10℃ laid several eggs successfully. Based on these results, we inferred that the last instar larvae with more than 2.3 g could be stored for 30-50 days at 8℃.

Prevalence of Microbiological Contamination in the Ready-To-Eat Side Dishes Sold in Gyeongsangnam-do, South Korea (경남지역에서 유통되는 즉석 반찬류의 미생물 오염도 조사)

  • Ji-Yeon Um;Hye-Jeong Jang;Yeon-Ju Choi;So-Young Kim;Areum Jo;Min Young Kim;Jihee Ahn;Jea-Dong Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.217-227
    • /
    • 2023
  • The consumption of ready-to-eat side dishes is rapidly growing in South Korea. These foods are particularly vulnerable to microbiological contamination as they are often cooked without any treatment, such as heating or stored at room temperature after cooking. Hence, in 2022, we analyzed the ready-to-eat side dishes sold in Gyeongsangnam-do, South Korea for microbiological contamination. We collected 100 samples from supermarkets in 7 cities, and then examined them for presence of food-borne pathogens and sanitary indicator bacteria. In the analysis of the food-borne pathogens, Bacillus cereus and Clostridium perfringens were isolated from 51 samples (51.0%) and 3 samples (3.0%), respectively. However, both quantitatively met the Korean Food Standards Codex. Genes of five different enterotoxins and one emetic toxin were analyzed from the 51 isolated B. cereus strains. We detected enterotoxin entFM (100.0%), nheA (94.1%), hblC (58.8%), cytK (56.9%), and bceT (41.2%) in 51 isolates, and emetic toxin gene, CER, in only one (2.0%) isolate. We did not detect C. perfringens toxin gene (cpe) that causes food poisoning in any one of the three C. perfringens isolates. In the case of sanitary indicator bacteria, Kimchi had the highest levels of total aerobic bacteria and coliforms, followed by Saengchae, Jeotgal, Jeolim, Namul, and Jorim, respectively. We counted total aerobic bacteria at two different storage temperatures (4℃ and 20℃) to determine the effect of storage temperature. When stored at 20℃, total aerobic bacteria count increased in most of the ready-to-eat side dishes, except for Jeotgal. This result conclusively shows the need for refrigerating the ready-to-eat side dishes after purchase. Further research is needed to assess the risk and safety of the ready-to-eat side dishes available in the market and determine appropriate safety management practices.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

A Study on the Characteristic of Habitat and Mating Calls in Korean Auritibicen intermedius (Hemiptera: Cicadidae) Using Bioacoustic Detection Technique (생물음향탐지기법을 활용한 한국 참깽깽매미 서식 및 번식울음 특성 연구)

  • Yoon-Jae Kim;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.592-602
    • /
    • 2022
  • This study aimed to check habitat distribution and analyze influencing factors by analyzing the mating calls of Auritibicen intermedius inhabiting limited locations in South Korea by applying bioacoustic detection techniques. The study sites were 20 protection areas nationwide. The mating call analysis period was 4 years from 2017 to 2021, excluding 2020. The bioacoustic recording system installed at each study site collected recordings of mating calls every day for 1 minute per hour. Climate data received from the Meteorological Agency, such as temperature, humidity, rainfall, cloudiness, and sunshine, were analyzed. The results of this study identified A. intermedius habitat only in four national parks in the highlands of Gangwon Province (Mt. Seorak, Mt. Odae, Mt. Chiak, and Mt. Taebak) out of 20 study sites. During the four years of study, the mating call period of A. intermedius was between August 5 and September 28, and the duration of the mating call was 31 to 52 days. The temperature analysis during the appearance period of A. intermedius showed that A. intermedius mainly produced mating calls at temperatures between 13.1℃ and 35.3℃, and the average temperature during the circadian cycle of mating calls (09:00 to 16:00) was 24.4 to 24.9℃. The analysis of the circadian cycle of mating calls at four study sites where A. intermedius appeared in 2019 showed that A. intermedius produced mating calls from 06:00 to 16:00 and that they peaked around 11:00 to 12:00. During the appearance period of A. intermedius, four species appeared in common: Hyalessa maculaticollis, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana. A logistic regression analysis confirmed that sunlight was the environmental factor affecting the mating call of A. intermedius. Regarding interspecific influence, it was confirmed that A. intermedius exchanged interspecific influence with 4 other common species (H. maculaticollis, M. opalifera, G. nigrofuscata, and S. coreana). The above results confirmed that A. intermedius habitats were limited in the highlands of Gangwon Province highlands in Korea and produced mating calls at a lower temperature compared to other species. These results can be used as basic data for future research on A. intermedius in Korea.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan (점봉산 신갈나무 낙엽의 분해율과 미기상요인과의 상관관계 분석)

  • Ho-Yeon Won;Young-Sang Lee;Jae-Seok Lee;Il-Hwan Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.455-463
    • /
    • 2022
  • To understand functional changes of forest ecosystems due to climate change, correlation between decomposition rate of leaf litter, an important function of forest ecosystems, and microclimatic factors was analyzed. After 48 months elapsed, percent remaining weight of Quercus mongolica leaf litter was 27.1% in the east aspect and 37.0% in the west aspects. Decay constant of Q. mongolica leaf litter was 0.33 in the east aspect and 0.25 in the west aspect after 48 months elapsed. Initial C/N ratio of Q. mongolica leaf litter was 38.5. After 48 months elapsed, C/N ratio of decomposing Q. mongolica leaf litter decreased to 13.43 in the east aspect and 16.72 in the west aspect. Average air temperature and soil temperature during the investigation period of the research site were 8.2±9.0 and 9.1±9.3 in the east and 8.5±7.4 and 9.3±7.3℃ in the west aspect, respectively, with the west aspect showing higher air and soil temperatures. Soil moisture showed no significant difference between east and west aspects (average soil moisture: 19.4±11.0% vs. 20.5±5.7%). However, as a result of analyzing the correlation between decomposition rate and microclimatic factors, it was found that the decomposition rate and soil moisture has a positive correlation(r=0.426) in the east aspect but not in the west aspect. Our study shows that the correlation between decomposition rate and microclimatic factors can be significantly different depending on the direction of the aspect.

Comparative Analysis of Growth, Yield, and Grain Quality of Hulled Barley Grown Under Different Meteorological Conditions in South Korea (기후분포가 다른 재배지에서 생장한 겉보리 생육, 수량 및 품질 비교)

  • Hyun-Hwa Park;Hyo-Jin Lee;Ye-Guon Kim;Dea-Wook Kim;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.69-80
    • /
    • 2023
  • This study investigated the differences in barley growth at different growth stages (Dec, Feb, and Apr) and the yield at harvest in three groups (G1, G2, and G3) with different climates. Additionally, we measured meteorological differences between areas during the growing season to determine which factors were related to growth and yield differences. We evaluated the chemical composition of soil and the mineral content in leaves during the heading stages. We also recorded the main constituents, amino acids, and mineral compositions of barley seeds grown in different areas. Tiller number/m2 in G1 areas was higher than in G2 and G3 when measured before and after overwintering. However, tiller number/m2 and dry aboveground plant parts/m2 in G2 and G3 areas were higher than in G1. Regrowth, panicle formation, and heading days in G2 areas occurred slightly later than in G1 and G3. However, there was no difference in chlorophyll content (SPAD value) between groups. The yield in G1 areas was 9~15% less than in G1 and G3. The decrease in yield in G2 areas could be due to lower panicle number, spikelet number, and ripening rate. In addition, the decrease in yield in G2 areas is likely because maximum, minimum, and average daily temperatures during the growing season were lower than those in G1 and G3. However, mineral nutrients in the soil were higher in the G2 area than in G1 and G3. The overall mineral content in plants tended to be higher in G1 areas than in G2 and G3. Mineral content such as Cu, K, Mg, and P in G3 areas and crude protein and most amino acids in G2 areas tended to be relatively low compared to other areas. Thus, the G1 area may be suitable for barley cultivation without adverse impacts on barley yield, main constituents, amino acids, and mineral contents compared to the main producing areas in G3.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.