• Title/Summary/Keyword: temperature-sensitive

Search Result 1,624, Processing Time 0.031 seconds

Effects of Photoperiod and Temperature on Flowering Responses of Ornamental Nicotiana species (일장 및 온도처리가 관상용 Nicotiana species의 개화에 미치는 영향)

  • Koo, Han-Seo;Kim, Chung-Whan;Lee, Young-Deuk
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • Several growth characteristics of two ornamental tobacco species, Nicotiana sanderae and N. affinis, were investigated in this study. Also effect of temperature and daylength on the flowering of the tobacco plants were evaluated to obtain basic information on breeding and cultivation. 1. The plants were great in high temperature-long day at the early stage and in low temperature-short day at the late stage of plant growth, for both Nicotana species. At the early growth stage the leaf length N. sanderae was great in high temperature-long day, and that of N. affinis was great in high temperature-short day period, while at the late stage of the plant growth the leaf lengths were more significantly effected by the temperature rather than daylength. Leaf width and leaf shape index were less sensitive to the conditions. 2. For both of the species, the total number of tobacco leaves not much influenced by the temperature and daylength. 3. There were no significant differences for budding and flowering period between the two species, both of which were sensitive to temperature and daylength with more influence by daylength than temperature. 4. Number of floral stalks, number of flower and flowering period were not much influenced by temperature and daylength; however, N. affinis had 2 more floral stalks, 31 more flowers, and 6 day longer flowering period than N. sanderae.

  • PDF

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Weather-sensitive Diseases and Their Correlations with Meteorological Factors: Results from Academic Papers (학술논문 분석을 통한 기상민감질환 선정 및 기상인자와의 관련성고찰)

  • An, Hye Yeon;Jeong, Ju-Hee;Kim, Taehee;Yun, Jinah;Kim, Hyunsu;Oh, Inbo;Lee, Jiho;Won, Kyung-Mi;Lee, Young-Mi;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.839-851
    • /
    • 2016
  • The effect of weather on disease was investigated based on results reported in academic papers. Weather-sensitive disease was selected by analyzing the frequency distributions of diseases and correlations between diseases and meteorological factors (e.g., temperature, humidity, pressure, and wind speed). Correlations between disease and meteorological factors were most frequently reported for myocardial infarction (MI) (28%) followed by chronic ischemic heart disease (CHR) (12%), stroke (STR) (10%), and angina pectoris (ANG) (5%). These four diseases had significant correlations with temperature (meaningful correlation for MI and negative correlations for CHR, STR, and ANG). Selecting MI, as a representative weather-sensitive disease, and summarizing the quantitative correlations with meteorological factors revealed that, daily hospital admissions for MI increased approximately 1.7%-2.2% with each $1^{\circ}C$ decrease in physiologically equivalent temperature. On the days when MI occurred in three or more patients larger daily temperature ranges ($2.3^{\circ}C$ increase) were reported compared with the days when MI occurred in fewer than three patients. In addition, variations in pressure (10 mbar, 1016 mbar standard) and relative humidity (10%) contributed to an 11%-12% increase in deaths from MI and an approximately 10% increase in the incidence of MI, respectively.

Pressure Sensitive Adhesion Performances of SIS/SBS based UV-curable Pressure Sensitive Adhesives using Thiol-ene Reaction (Thiol-ene 반응을 이용한 UV경화형 SIS/SBS계 점착제의 점착물성)

  • Lim, Dong-Hyuk;Do, Hyun-Sung;Kim, Hyun-Joong;Yoon, Goan-Hee;Bang, Jung-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Synthetic rubber based pressure-sensitive adhesives (PSAs) usually containing SIS or SBS block copolymer, tackifier, plasticizer, and other additives are now widely used on various applications. As these PSAs are physically crosslinked and can be applied without the use of solvent, they are thermally processable and environmentally friendly. However these PSAs cannot be used in high temperature applications and in applications where solvent and chemical resistance properties are required. We developed the PSA adding UV curable system, such as thiol-ene system, to increase adhesion properties at elevated temperature. The adhesion properties such as probe tack, peel strength, shear adhesion failure temperature (SAFT) were evaluated. The probe tack test was conducted with varying probe materials and coating thickness of PSAs. Using the contact angle, the surface property of the cured PSAs was also observed.

  • PDF

Experimental study of heat transfer in the surrounding for bubble attached at the upper cooled surface of square cavity using the Thermo-sensitive Liquid-crystal Tracer (열감응액정을 이용한 사각공동내의 상단냉각평판에 형성된 기포 주위의 열전달현상 구명)

  • Kwon, Gi-Han;Eom, Yong-Kyoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.509-515
    • /
    • 2001
  • In a square cavity, the flow phenomena in the surrounding of the bubble attached at the upper cooled solid wall were studied by using a thermo-sensitive liquid-crystal tracer and image processing techniques. This method offers the advantage of measuring the entire flow field in a selected plane within the fluid at a given instant of time in contrast to point by point method like T/C. Quantitative data of the temperature were obtained by applying a colour-image-processing to the. visualized image. As the growing of a bubble, In a bubble size appears the flow phenomena which the direction of flow is reversed in the entire temperature and flow field. The observed phenomena are described with regard to thermocapillary convection.

  • PDF

Cold Chain Management in Pharmaceutical Industry: Logistics Perspective

  • Yoon, Yuri
    • Journal of Distribution Science
    • /
    • v.12 no.5
    • /
    • pp.33-40
    • /
    • 2014
  • Purpose - This paper aims to review cold chain management, especially in the pharmaceutical industry, to explore the cold chain process of delivering temperature-sensitive pharmaceutical products, and to identify areas for further development. Research design, data, and methodology - The paper, based on literature review and corporate analysis, reviews the development and status of the cold supply chain system, including its important role in the pharmaceutical industry. Results - Logistics in this field requires more stages than are typically needed. Due to the unique characteristics of the market, few companies can provide the services; currently, only few global companies with large networks and high technologies can afford to do so. Expanding pharmaceutical markets to meet global demand will require cold chain development, especially in "pharmerging" markets. Conclusions - Cold chain is a highly sensitive market in terms of products being carried within the chain that itself is a complex system. However, at the same time, it is a niche market with new opportunities. Hence, a sound cold chain infrastructure is needed to satisfy companies, governments, and customers for both commercial and public reasons.

An Experimental Study on Laminar Flow Temperature Using Thermo-sensitive Liquid Crystal (감온액정을 이용한 층류유동의 온도장에 관한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.373-378
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of laminar water flow in a horizontal circular tube by using liquid crystal. A simultaneous measurement technique has been employed to measure the temperature field in a two-dimensional cross section of fluid flow. This study found the temperature distribution for Re =900~1,500 along longitudinal sections and the results appear to be physically reasonable. To determine some characteristics of the laminar flow, 2D PIV technique is employed for temperature measurement and liquid crystal is used for heat transfer experiments in water. The experimental rig was manufactured from an acryle tube. The test tube diameter of 25mm, and a length of 1200mm. The used algorithm is the gray level cross-correlation method by using Kimura et al. in 1986.

  • PDF

Controlled Release Behavior of Temperature Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Jin, Dong-Hwee;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • The composites of temperature-sensitive hydrogel and activated carbons were prepared in order to improve both the mechanical strength of hydrogel matrix and the loading capacity of drug in a hydrogel drug delivery system. The swelling of composite hydrogel was varied depending on the temperature. Both the swelling and the release behavior of the composite hydrogel were varied depending on the kind of activated carbon. The release behavior showed the high efficiency which is important for practical applications.

Raman Scattering Characteristics with Varying Liquid Water Temperature (유체온도 변화에 따른 Raman 산란 특성)

  • An, Jeongsoo;Yang, Sunkyu;Chun, Seyoung;Chung, Moonki;Choi, Youngdon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.621-627
    • /
    • 1999
  • This paper presents Raman scattering of liquid water to obtain the characteristics with variation of temperature. Very clear Stokes-Raman signals were observed, which shows H-O vibration stretching and H-O-H vibration bending. The obtained spectrum were processed by FFT filter to extract the noise and base. The spectral shape of the H-O stretching provided a various sensitive signature which allowed temperature to be determined by a curve-fitting technique. Those are Maximum Intensity, Maximum Wave Length, FWHM(Full Width at Half Maximum), PMCR(Polymer Monomer Concentration Ratio) and TSIR(Temperature Sensitive Intensity Ratio). TSIR method shows the highest accuracy of $0.1^{\circ}C$ in mean error and $0.32^{\circ}C$ In maximum error.