• 제목/요약/키워드: temperature-rise

검색결과 1,952건 처리시간 0.038초

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구 (A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer)

  • 안현모;김민수;송재성;한성진
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

고속 스핀들용 공기 베어링의 열 특성에 관한 연구 (A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle)

  • 이득우;이종렬;김보언;안지훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

풍력발전기 Air Guide 위치별 온도상승 해석 (Analysis of Temperature Rise on the Air-Guide's Position of Wind Power Generator)

  • 한창우;김현재;권기영;이학성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 2008
  • In this paper, the numerical analysis of the model without air-guide was carried out in wind power generator. From numerical results, the temperature rise was not satisfied for the class F insulation and the non-uniformity of temperature distribution was a wide difference in heating elements. To improve these problems, the air-guide was installed in front of the coil head of non-drive end(NDE). The short distance between coil head and air-guide was more effective than long distance in cooling performance. Compared to that of the preliminary design, it was found that the cooling performance of the modification design was improved about 12%.

  • PDF

혼화재료의 조합사용에 따른 콘크리트의 기초물성 및 단열온도상승 특성 (Fundamental Properties and Adiabatic Temperature Rise of Concrete with the Combination of Mineral and Chemical Admixture)

  • 전충근;김종;신동안;윤기원;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.345-348
    • /
    • 2005
  • This paper presents the result of adiabetic temperature rise and fundamental properties of concrete combining admixtures. According to results, difference of setting time with I5.5hours is observed between S-P and R-F30 mixture. Based on the adiabetic temperature rise test, 8$^{circ}C$of heat producted occurs between E-P and R-F30 mixture. is applied to estimate the temperature rising under adiabetic curing condition, which exhibits closer consistency with tested value. The function mentioned above can account for the effect of dormant period in hydration process at early stage on hydration heat production. It reveals that the consideration of placing layer based on the mixture adjustment(E-P mixture at top layer and R-F30 mixture at bottom layer) in mass concreting will contribute to reduce hydration heat as well as alleviate tensile stress discrepancy between placing layer.

  • PDF

열전달 계수의 변화를 고려한 초고압 GIS 모선의 온도 상승 예측 (Temperature Rise Prediction of Busbar of EHV GIS Considering Variation of Heat-Transfer Coefficient)

  • 김현훈;한성진;주수원;정진교;이병윤;박경엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권5호
    • /
    • pp.313-319
    • /
    • 2000
  • In order to design the current carrying conductor for GIS, it is important to predict temperature-rise when rated current flows in the bus bar. However, it is not easy to apply the correct heat transfer coefficient on the boundary between different material for the thermal analysis. In this paper, the heat transfer coefficient which depends on parameters such like material constant, model geometry as well as ambient temperature, was calculated by analytic method. The calculated coefficient is used for the temperature rise prediction by F.E.M. The results show good agreement with experimental data.

  • PDF

자계-열계를 결합한 초고압 GIS용 모선의 온도상승 예측 (Prediction of Temperature Rise in EHV GIS Bus Bar by Coupled Magneto-Thermal F.E A)

  • 김중경;민경조;김한균;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.990-992
    • /
    • 2005
  • This paper presents a new magneto-thermal finite element analysis for predicting the temperature rise of the EHV GIS bus bar. The power losses of a bus bar calculated by the magnetic field analysis are used as the input data to predict the temperature rise for the thermal analysis. The heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material constant and model geometry for the natural convection. The temperature distribution in a bus bar by coupled magneto-thermal finite element analysis shows good agreement with the experimental data.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.