• Title/Summary/Keyword: temperature stable characteristics

Search Result 961, Processing Time 0.033 seconds

Quality Characteristics and Antioxidant Activities of Fermented Deodeok Tea with Pleurotus eryngii Mycelium (Pleurotus eryngii Mycelium으로 발효한 더덕 차의 품질 및 항산화 특성)

  • Lee, Ji-Yeon;Kim, Byung-Keuk;Park, Hong-Je
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.5
    • /
    • pp.637-644
    • /
    • 2013
  • This study was conducted to obtain the baseline data for fermented tea with King oyster (Pleurotus eryngii) mushroom mycelium as well as to investigate the possibility of development for deodeok processing products. For this research, the physicochemical properties and antioxidant activity for fermented tea were confirmed by different roasting temperatures and roasting times. The results of the physicochemical properties, browning, turbidity, reducing sugar, total polyphenol and total flavonoid contents, were increased with increasing roasting temperature and roasting time, whereas the pH was decreased. The results of the antioxidant activity test of fermented tea, DPPH radical-scavenging activity, FRAP and reducing power, were increased with increasing roasting temperature and roasting time. The preference of fermented tea was confirmed as being the highest when roasted at $180^{\circ}C$ for 30 min. Although fermented tea did not have a unique flavor of mushroom and burnt flavor, it had strong color, flavor and taste. For this reason, fermented tea production for high content of functional materials and high preference is possible by roasting at $180^{\circ}C$ for 30 min. As for the results of this study, the physical properties of fermented deodeok were relatively stable on high temperature exposure and furthermore, the development of a variety of foods will be possible because fermented deodeok has an antioxidant capacity.

Characteristic of Oxidation Reaction of Lanthanide Chlorides in Oxygen-Eutectic Salt Bubble Column (산소-공융염 기포탑에서 희토류염화물의 산화반응 특성)

  • Cho, Yung-Zun;Yang, Hee-Chul;Lee, Han-Soo;Kim, In-Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.465-469
    • /
    • 2009
  • Characteristics of oxidation reaction of four lanthanide chlorides(Ce, Nd, Pr and $EuCl_3$) in a oxygen-eutectic(LiCl-KCl) salt bubble column was investigated. From the results obtained from the thermochemical calculations by HSC chemistry software, the most stable lanthanide compounds in the oxygen-used rare earth chlorides system were oxychlorides(EuOCl, NdOCl, PrOCl) and oxides($CeO_2$, $PrO_2$), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides for Eu, Nd and Pr and oxides for Ce and Pr were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes : small cubic(oxide) and large tetragonal (oxychloride) structures. The conversion efficiencies of the lanthanide elements to their molten salt-insoluble precipitates(or compound) were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of $650^{\circ}C$ of the molten salt temperature and 420 min of the sparging time, the conversion efficiencies were over 99% for all the investigated lanthanide chlorides.

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.

Numerical study on the thermal performance characteristics of the stack system for FCEV (연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Won, Jong-Phil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3708-3713
    • /
    • 2015
  • The objective of this study is to numerically investigate the heat transfer rate for evaluating the thermal performances of the stack thermal system using the commercial software. In order to perform this, the cooling performances of the stack system for fuel cell electric vehicle were tested under both driving road conditions including the general driving road and uphill driving road and operating conditions with and without of the air conditioning system. The heat transfer rate of the stack radiator for the stack system was increased with the increase of the inlet air flow velocity. The heat transfer rate of the stack radiator increased by 105.3% at the coolant flow rate of 20 l/min and 221.3% at the coolant flow rate of 120 l/min with the increase of the air flow velocity from 2 m/s to 10 m/s. $9.45^{\circ}C$ of inlet coolant temperature of the stack radiator at the severe driving condition of the slope of 8% and velocity of 50 km/h showed higher 85.3% than $5.1^{\circ}C$ of inlet coolant temperature at the general driving condition of the slope of 0% and velocity of 120 km/h. In addition, as the fuel cell electric vehicle with the air conditioning system operation was driving under severe uphill driving condition, the radiator coolant temperature for a stable stack operation could be exceeded over $70^{\circ}C$.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

High-Temperature Cesium (Cs) Retention Ability of Cs-Exchanged Birnessite (세슘(Cs)으로 이온 교환된 버네사이트의 고온에서의 Cs 고정 능력)

  • Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.313-321
    • /
    • 2023
  • Numerous studies have investigated the adsorptive sequestration of radioactive cesium in the natural environment. Among these studies, adsorption onto minerals and high-temperature treatment stand out as highly effective, as demonstrated by the use of zeolite. In this study, cesium was ion-exchanged with birnessite and subsequently underwent high-temperature treatment up to 1100℃ to investigate both mineral phase transformation and the leaching characteristics of cesium. Birnessite has a layered structure consisting of MnO6 octahedrons that share edges, demonstrating excellent cation adsorption capacity. The high-temperature treatment of cesium-ion-exchanged birnessite resulted in changes in the mineral phase, progressing from cryptomelane, bixbyite, birnessite to hausmannite as the temperature increased. This differs from the phase transformation observed in the tunneled manganese oxide mineral todorokite ion-exchanged with cesium, which shows phase transformation only to birnessite and hausmannite. The leaching of cesium from cesium-ion-exchanged birnessite was estimated by varying the reaction time using both distilled water and a 1 M NaCl solution. The leaching quantity changed according to the treatment temperature, reaction time, and type of reaction solution. Specifically, the cesium leaching was higher in the sample reacted with 1 M NaCl compared to the sample with distilled water and also increased with longer reaction time. For the samples reacted with distilled water, the cesium leaching initially increased and then decreased, while in the NaCl solution, the leaching decreased, increased again, and finally nearly stopped like the sample in the distilled water for the sample treated at 1100℃. These changes in leaching are closely associated with the mineral phases formed at different temperatures. The phase transformation to cryptomelane and birnessite enhanced cesium leaching, whereas bixbyite and hausmannite hindered leaching. Notably, hausmannite, the most stable phase occurring at the highest temperature, demonstrated the greatest ability to inhibit cesium leaching. This results strongly suggest that high-temperature treatment of cesium-ion-exchanged birnessite effectively immobilizes and sequesters cesium.

Characteristics of Coal Devolatilization and Spontaneous Combustion at Low Temperatures (저온영역에서 석탄의 탈휘발 및 자연발화 특성 연구)

  • Sung Min Yoon;Seok Hyeong Lee;Tae Hwi An;Myung Won Seo;Sang Won Lee;Dae Sung Kim;Tae-Young Mun;Sung Jin Park;Sang Jun Yoon;Ji Hong Moon;Jae Goo Lee;Jong Hoon Joo;Ho Won Ra
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.288-296
    • /
    • 2023
  • Coal is abundantly available compared to other energy sources and is used as a versatile energy resource worldwide. To address the environmental issues stemming from conventional coal utilization, efforts are underway to develop clean coal utilization technologies, with IGCC technology being a notable example. In IGCC plants, coal is subjected to a CMD process where both drying and pulverization are achieved by supplying hot air. However, if the temperature of the supplied hot air is excessively high, it can lead to devolatilization and spontaneous combustion, thereby compromising the stable operation of the CMD process. This study aimed to measure the devolatilization and spontaneous combustion temperatures of different types of bituminous coal, and to explore their correlations with the characteristics of the coals. Six coal types exhibited devolatilization between 350 and 400 ℃, while three coal types showed devolatilization at temperatures exceeding 400 ℃. Spontaneous combustion ℃curred in one coal type below 100 ℃, six coal types between 100 and 150 ℃, and two coal types above 150 ℃. The measured initiation temperatures were compared with the coal characteristics including the oxygen, moisture, Fe2O3, and CaO content, the H/C ratio, and the O/C ratio to establish correlations. Regression analysis was used to calculate the regression coefficients and determination coefficients for each ignition temperature. It was found that 52.44% of the FC/VM data significantly influenced the volatile matter ignition temperature, and 59.10% of the Fe2O3 data significantly affected the spontaneous combustionignition temperature.