• Title/Summary/Keyword: temperature shock

Search Result 740, Processing Time 0.028 seconds

Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2

  • Park, Gunhyuk;Oh, Myung Sook
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.467-472
    • /
    • 2015
  • Heat shock increases skin temperature during sun exposure and some evidence indicates that it may be involved in skin aging. The antioxidant response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) is a critically important cellular defense mechanism that serves to limit skin aging. We investigated the effects of heat shock on collagenase expression when the antioxidant defense system was downregulated by knockdown of Nrf2. GSH and collagenases were analyzed, and the expression of inducible Nrf2, HO-1, and NQO1 was measured. HS68 cells were transfected with small interfering RNA against Nrf2. Heat shock induced the downregulation of Nrf2 in both the cytosol and nucleus and reduced the expression of HO-1, GSH, and NQO1. In addition, heat-exposed Nrf2-knockdown cells showed significantly increased levels of collagenase protein and decreased levels of procollagen. Our data suggest that Nrf2 plays an important role in protection against heat shock-induced collagen breakdown in skin. [BMB Reports 2015; 48(8): 467-472]

Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen (액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성)

  • Lee, Sang-Hwa;Shin, Woo-Ju;Khan, Umer Amir;Oh, Seok-Ho;Sung, Jae-Kyu;Lee, Bang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF

Optimization of Electrode Pattern for Multilayer Ceramic Heater by Finite Element Method (유한요소법에 의한 적층형 세라믹 히터의 전극 패턴 최적화)

  • Han, Yoonsoo;Kim, Shi Yeon;Yeo, Dong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.776-781
    • /
    • 2017
  • In this study, we investigated the effect of electrode pattern design on the thermal shock resistance and temperature uniformity of a ceramic heater. A cordierite substrate with a low thermal expansion coefficient was fabricated by tape casting, and a tungsten electrode was printed and used as a heating element. The temperature distribution of the ceramic heater was calculated by a finite-element method (FEM) by considering various electrode patterns, and the tensile stress distribution due to the thermal stress was calculated. In the electrode pattern with a single-line width, the central part of the ceramic heater was heated to the maximum temperature, and the position of the ceramic heater having a double-line width was changed to the maximum temperature, depending on the position of the minimum line width pattern. The highest tensile stress was found along the edges of the ceramic heater. The temperature gradient at the edge determined the tensile stress intensity. The smallest tensile stress was observed for electrode pattern D, which was expected to be advantageous in resisting thermal shock failures in ceramic heaters.

COMPUTATIONAL INVESTIGATION OF THE HIGH TEMPERATURE REACTING GAS EFFECTS ON RE-ENTRY VEHICLE FLOWFIELDS (재진입 비행체 외부 열유동장의 고온반응기체 효과에 관한 전산해석)

  • Kang, E.J.;Kim, J.Y.;Park, J.H.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aerothermodynamic characteristics of re-entry vehicles in hypersonic speed regimes are investigated by applying CFD methods based on the Navier-Stokes-Fourier equations. A special emphasis is placed on the effects of high temperature chemically reacting gases on shock stand-off distance and thermal characteristics of the flowfields. A ten species model is used for describing the kinetic mechanism for high temperature air. In particular, the hypersonic flows around a cylinder are computed with and without chemically reacting effects. It is shown that, when the chemically reacting effects are taken into account, the shock stand-off distance and temperature are significantly reduced.

On the two phase detonation in carbon laden oxygen : taking into account of inner particle temperature distribution (입자온도 분포를 고려한 탄소입자와 산소에서의 이상폭발현상에 관한 연구)

  • 승성표;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1104-1112
    • /
    • 1988
  • In this study the structure of a two phase detonation has been numerically investigated through the assumption of a steady and one-dimensional flow in the suspension of carbon particles and pure oxygen. The bow shock formation in front of carbon particles has been taken into consideration when the relative velocity of gas flow with respect to the particle exceeds the local speed of sound. But its effect was found to be very limited to the induction zone only. Furthermore the interior particle temperature distribution has been considered in this work. It was found that the inner temperature gradient was very steep in the region of high relative velocity. On the while the temperature distribution inside the particle was almost uniform in the region of low relative velocity. Overall, the effect of the interior particle temperature distribution has been significant in the two phase detonation.

Fluctuation of Temperature Induces Pathogenicity of Streptococcus iniae and Changes of Immunology Related Genes of Korean Rockfish, Sebastes schlegeli

  • EunYoung Min;Seon-Myeong Jeong;Hyun-Ja Han;Miyoung Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.420-429
    • /
    • 2023
  • This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.

Shock Tube and Modeling Study of Ethanol Ignition (에탄올 점화 과정에 관한 충격관 실험 및 모델 연구)

  • Shin, Kuan-Soo;Park, Ki-Soo;Gwon, Eun-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • The ignition of ethanol-oxygen-argon mixture was studied in reflected shock waves over the temperature range of 1281-1625 K and the pressure range of 0.69-1.06 bar. The ignition delay time was measured by the sudden increase of pressure profile and the radiation emitted by OH radicals. The relationship between the ignition delay time and the concentrations of ethanol and oxygen was determined in the form of mass-action expressions with an Arrhenius temperature dependence. In contrast to the behavior observed in methanol, ethanol acts to inhibit rather than accelerate its own ignition. Several kinetic mechanisms proposed for ethanol oxidation at high temperatures have been tested by the computer simulation.

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders (전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성)

  • ;Constantin Zografou
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

Cumulative Mortality in Striped Beakperch, Oplegnathus fasciatus Infected with Red Sea Bream Iridovirus (RSIV) at Different Water Temperature and Identification of Heat Shock Protein 70 (수온별 Red Sea Bream Iridovirus (RSIV) 인위감염에 따른 돌돔의 누적폐사 및 Heat Shock Protein (HSP) 70의 동정)

  • Kim, Seok-Ryel;Jeong, Byeong-Mun;Jung, Sung-Ju;Kitamura, Shin-Ichi;Kim, Du-woon;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • This study evaluates the pathogenicity in striped beakperch, Oplegnathus fasciatus infected with red sea bream iridovirus (RSIV) at different water temperature (17°C, 20°C, 25°C and 27°C). When the fish group was infected with RSIV at 17°C and 20°C, cumulative mortality did not show any significant difference with control group. In contrast, the case at 25°C and 27°C, cumulative mortality reached more than 80%. However, RSIV was detected from all of the fish in each temperature. To confirm a relationship between temperature change and heat shock protein (HSP), partial HSP70 cDNA was isolated from striped beakperch.