• Title/Summary/Keyword: temperature profiles

Search Result 991, Processing Time 0.03 seconds

Analysis of Transient Thermal Characteristics in a Gas-Loaded Heat Pipe (가스내장 히트파이프의 과도 열특성 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.514-523
    • /
    • 2001
  • The thermal performance characteristics of gas-loaded heat pipe(GLHP) were investigated by using transient diffuse-front model. Numerical evaluation of the GLHP is made with water as a working fluid and Nitrogen as control gas in the stainless steel tube. The transient vapor temperature and wall temperature were obtained. It is found that the temperature profiles and gas mole fraction distribution have been mainly influence by the diffusion between working fluid and noncondensable control gas in the condenser of GLHP. It is also found that he large power input make the diffusion region smaller.

  • PDF

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

HYDROGEN EMISSION SPECTRA OF QUIESCENT PROMINENCES

  • Kim, Kap-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.23 no.1
    • /
    • pp.71-82
    • /
    • 1990
  • Theoretical calculations of the combined radiative transfer and statistical equilibrium equation including the charge-particle conservations have been earned out for a multilevel hydrogen atom in quiescent prominences. Cool and dense models show the steep changes of population and radiation field in the vicinity of the surface, while these physical quantities remain unchanged for models with temperature of 7,300K, regardless of total densities. Ionization rate of hydrogen atom related with metallic line formation varies in considerable amounts from the surface to the center of model prominences cooler than 6,300K. However, such cool models cannot release enough hydrogen line emissions to explain observed intensities. Prominence models with a temperature higher than 8,000K can yield the centrally reversed Lyman line profiles confirmed by satellite EUV observations. We find that queiscent prominence with a density between $2{\times}10^{11}$ and $10^{12}cm^{-3}$ should be in temperature range between 6,300K and 8,300K, in order to explain consistently observed H alpha, beta line emissions and $n_p/n_l$ ratio.

  • PDF

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj;Santoyo-Salazar, Jaime;Ko, Jang-Myoun;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.216-219
    • /
    • 2011
  • Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.

Thermal Ratchetting of the Conductive Adhesives Joints Subjected to the Thermal Cycles (전도성 접착제의 열경화 응력에 대한 해석)

  • 박주혁;서승호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • When a thermoset conductive adhesive joints are subjected to the thermal cycles, the thermal stresses are developed around the joints. Most of in-plane, hi-axial components of these residual stresses induces large tensile peel stresses and weakens adhesive joints. Also these stresses vary with thermal cycles, and result in thermal fatigue loading and debonding propagation. In this study, the thermal ratchetting effect in conductive adhesive joints are evaluated by the finite element analysis with the viscoelastic material model. In order to Investigate the relationship between thermal ratchetting and glass transition temperature, the mathematical material model has been developed experimentally by dynamic mechanical analysis. These material models are implemented to the finite element analysis with thermal loading cycles. And the stress profiles around the conductive adhesive joints are calculated. It has been observed that the thermal ratchetting occurs when the maximum temperature of thermal cycles is above the glass transition temperature. The peel and shear stress components increase as the thermal loading time increases. This will contributes to thermal fatigue fracture of the joints.

  • PDF

Effects of the Alloy Length on the Growth Behavior of Directionally Solidified Al-15Cu-lMg Alloy (Al-15Cu-1Mg합금의 일방향응고시 시편의 길이변화에 따른 응고거동변화)

  • Moon, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Al-15Cu-lMg alloys have been directionally solidified in 3mm diameter alumina tubes under the conditions of $760^{\circ}C$ of furnace temperature and 12 cm/hr of furnace moving velocity(V). By analyzing the evolution of the temperature profiles along the alloy length, the position of the solid/liquid interface, temperature gradient(G) and local growth velocity (R) were determined. These growth characteristics were compared for 6, 10, 14 cm length alloys. Steady state growth region was obtained in 15 cm length alloy, not in 6, 10 cm.

  • PDF

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.

Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG) (기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증)

  • Kim, Wonheung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.

Evaluation of the Nip Pressure Profile and Analysis of Heat Transfer in Soft Nip Calender (소프트닙 캘린더의 닙 압력 프로파일 평가와 닙 내 열전달 현상에 대한 해석)

  • 이사용;이학래;박선규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.26-34
    • /
    • 2000
  • Understanding the nip geometry and heat transfer phenomena of soft nip calenders, which has been used in the production of newsprint and coated papers for many years, is very important since improper setting of soft nip calendering conditions causes deterioration of paper quality and productivity. In this study theoretical analysis on nip pressure and heat transfer phenomena in the nip of soft nip calenders has been made. The variables examined were calendering pressure, surface temperature of the heating roll, nip residence time and ingoing sheet moisture, By measuring nip widths and maximum nip pressure with Prescale film at a normal temperature, accurate line load has been obtained. With this line load, nip pressures at different temperature and nip widths were calculated. Results showed that as temperature increased, nip widths increased and nip pressures decreased. Equations derived for the heat conduction phenomena in soft nip calender nip were derived based on the semi-infinite plate and finite difference method and were used for the analysis of heat transfer within the nip. Temperature profiles in z-direction of paper within the nip were obtained. Finite difference method allowed more accurate analysis of the heat transfer in the calender nip. In this study newsprint and coated paper were considered as a single plate and two-layer plate consisted of sheet and coating layers, respectively. Heat trans-fer to paper increased as heated roll surface temperature and nip residence time were increased.

  • PDF

Silver nanowire-containing wearable thermogenic smart textiles with washing stability

  • Dhanawansha, Kosala B.;Senadeera, Rohan;Gunathilake, Samodha S.;Dassanayake, Buddhika S.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • Conventional fabrics that have modified in to conductive fabrics using conductive nanomaterials have novel applications in different fields. These of fabrics can be used as heat generators with the help of the Joule heating mechanism, which is applicable in thermal therapy and to maintain the warmth in cold weather conditions in a wearable manner. A modified fabric can also be used as a sensor for body temperature measurements using the variation of resistance with respect to the body temperature deviations. In this study, polyol synthesized silver nanowires (Ag NWs) are incorporated to commercially available cotton fabrics by using drop casting method to modify the fabric as a thermogenic temperature sensor. The variation of sheet resistance of the fabrics with respect to the incorporated mass of Ag NWs was measured by four probe technique while the bulk resistance variation with respect to the temperature was measured using a standard ohm meter. Heat generation profiles of the fabrics were investigated using thermo graphic camera. Electrically conductive fabrics, fabricated by incorporating 30 mg of Ag NWs in 25 ㎠ area of cotton fabric can be heated up to a maximum steady state temperature of 45℃, using a commercially available 9 V battery.