• 제목/요약/키워드: temperature prediction model

검색결과 1,375건 처리시간 0.035초

용접 열영향부 미세조직 및 재질예측 모델링: II. Fe-C-Mn 강에서 페라이트 결정립크기의 영향을 고려한 Austenitization kinetics 및 오스테나이트 결정립크기 예측모델 (Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: II. Prediction Model for the Austenitization Kinetics and Austenite Grain Size Considering the Effect of Ferrite Grain Size in Fe-C-Mn Steel)

  • 유종근;문준오;이창희;엄상호;이종봉;장웅성
    • Journal of Welding and Joining
    • /
    • 제24권1호
    • /
    • pp.77-87
    • /
    • 2006
  • Considering ferrite grain size in the base metal, the prediction model for $A_{c3}$ temperature and prior austenite grain size at just above $A_{c3}$ temperature was proposed. In order to predict $A_{c3}$ temperature, the Avrami equation was modified with the variation of ferrite grain size, and its kinetic parameters were measured from non-isothermal data during continuous heating. From calculation using a proposed model, $A_{c3}$ temperatures increased with increasing ferrite grain size and heating rate. Meanwhile, by converting the phase transformation kinetic model that predicts the ferrite grain size from austenite grain size during cooling, a prediction model for prior austenite grain size at just above the $A_{c3}$ temperature during heating was developed.

LSTM-based Sales Forecasting Model

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1232-1245
    • /
    • 2021
  • In this study, prediction of product sales as they relate to changes in temperature is proposed. This model uses long short-term memory (LSTM), which has shown excellent performance for time series predictions. For verification of the proposed sales prediction model, the sales of short pants, flip-flop sandals, and winter outerwear are predicted based on changes in temperature and time series sales data for clothing products collected from 2015 to 2019 (a total of 1,865 days). The sales predictions using the proposed model show increases in the sale of shorts and flip-flops as the temperature rises (a pattern similar to actual sales), while the sale of winter outerwear increases as the temperature decreases.

LSTM을 이용한 한반도 근해 이상수온 예측모델 (Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM)

  • 최혜민;김민규;양현
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.265-282
    • /
    • 2022
  • 해수면 온도(Sea surface temperature, SST)는 지구시스템에서 해양의 순환과 생태계에 큰 영향을 주는 요소이다. 지구온난화로 한반도 근해 해수면 온도에 변화가 생기면서 이상 수온(고수온, 저수온) 현상이 발생하여 해양생태계와 수산업 피해를 지속적으로 발생시키고 있다. 따라서 본 연구는 한반도 근해 해수면 온도를 예측하여 이상 수온 현상 예측으로 피해를 예방하는 방법론을 제안한다. 연구 지역은 한반도 근해로 설정하여 동시간대 해수면 온도 데이터를 사용하기 위해 Europe Centre for Medium-Range Weather Forecasts (ECMWF)의 ERA5 자료를 사용하였다. 연구방법으로는 해수면 온도 데이터의 시계열 특징을 고려하여 딥러닝 모델 중 시계열 데이터 예측에 특화된 Long Short-Term Memory (LSTM) 알고리즘을 이용하였다. 예측 모델은 1~7일 이후 한반도 근해 해수면 온도를 예측하고 고수온(High water temperature, HWT) 혹은 저수온(Low water temperature, LWT) 현상을 예측한다. 해수면 온도 예측 정확도 평가를 위해 결정계수(Coefficient of determination, R2), 평균제곱근 편차(Root Mean Squared Error, RMSE), 평균 절대 백분율 오차(Mean Absolute Percentage Error, MAPE) 지표를 사용하였다. 예측 모델의 여름철(JAS) 1일 예측 결과는 R2=0.996, RMSE=0.119℃, MAPE=0.352% 이고, 겨울철(JFM) 1일 예측 결과는 R2=0.999, RMSE=0.063℃, MAPE=0.646% 이었다. 예측한 해수면 온도를 이용하여 이상 수온 예측 정확도 평가를 F1 Score로 수행하였다(여름철(2021/08/05) 고수온 예측 결과 F1 Score=0.98, 겨울철(2021/02/19) 저수온 예측 결과 F1 Score=1.0). 예측 기간이 증가하면서 예측 모델이 해수면 온도를 과소추정하는 경향을 보여주었고, 이로 인해 이상 수온 예측 정확도 또한 낮아졌다. 따라서, 향후 예측 모델의 과소추정 원인을 분석하고 예측 정확도 향상을 위한 연구가 필요할 것으로 판단된다.

토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구 (Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data)

  • 김해동;김하영
    • 한국환경과학회지
    • /
    • 제33권6호
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발 (Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir)

  • 안기홍;김선주;서동일
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.

Framework for improving the prediction rate with respect to outdoor thermal comfort using machine learning

  • Jeong, Jaemin;Jeong, Jaewook;Lee, Minsu;Lee, Jaehyun
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.119-127
    • /
    • 2022
  • Most of the construction works are conducted outdoors, so the construction workers are affected by weather conditions such as temperature, humidity, and wind velocity which can be evaluated the thermal comfort as environmental factors. In our previous researches, it was found that construction accidents are usually occurred in the discomfort ranges. The safety management, therefore, should be planned in consideration of the thermal comfort and measured by a specialized simulation tool. However, it is very complex, time-consuming, and difficult to model. To address this issue, this study is aimed to develop a framework of a prediction model for improving the prediction accuracy about outdoor thermal comfort considering environmental factors using machine learning algorithms with hyperparameter tuning. This study is done in four steps: i) Establishment of database, ii) Selection of variables to develop prediction model, iii) Development of prediction model; iv) Conducting of hyperparameter tuning. The tree type algorithm is used to develop the prediction model. The results of this study are as follows. First, considering three variables related to environmental factor, the prediction accuracy was 85.74%. Second, the prediction accuracy was 86.55% when considering four environmental factors. Third, after conducting hyperparameter tuning, the prediction accuracy was increased up to 87.28%. This study has several contributions. First, using this prediction model, the thermal comfort can be calculated easily and quickly. Second, using this prediction model, the safety management can be utilized to manage the construction accident considering weather conditions.

  • PDF

Thermal Stratification 해석 난류모델 평가 (Evaluation of Turbulence Models for Analysis of Thermal Stratification)

  • 최석기;위명환;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.221-225
    • /
    • 2004
  • Evaluation of turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The turbulence models tested in the present study are the two-layer model, the $\kappa-\omega$ model, the v2-f model and the low-Reynolds number differential stress-flux model. When the algebraic flux model or differential flux model are used for treating the turbulent heat flux, there exist little differences between turbulence models in predicting the temporal variation of temperature. However, the v2-f model and the low-Reynolds number differential stress-flux model better predict the steep gradient o( temperature at the interface of thermal stratification, and only the v2-f model predicts properly the oscillation of temperature. The LES Is needed for a better prediction of the amplitude and frequency of the temperature fluctuation.

  • PDF

Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정 (A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics)

  • 황유선;김찬수
    • 대기
    • /
    • 제28권3호
    • /
    • pp.247-261
    • /
    • 2018
  • The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

새로운 겉보기 활성에너지 함수에 의한 콘크리트의 재료역학적 성질의 예측 (Prediction of Mechanical Properties of Concrete by a New Apparent Activation Energy Function)

  • 한상훈;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.173-178
    • /
    • 2000
  • New prediction model is investigated estimating splitting tensile strength and modulus of elasticity with curing temperature and aging. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values. New prediction model well estimated splittinge tensile strength and elastic modulus as well as compressive strength.

  • PDF