• 제목/요약/키워드: temperature prediction

검색결과 2,696건 처리시간 0.032초

ISM에 의한 항공기용 가스터빈 재료의 크리프 수명예측 (Creep Life Prediction of Aircraft Gas Turbine material by ISM)

  • 공유식
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.43-48
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep strength and creep for nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and 704$^{\circ}C$. The predictive equation of ISM creep has better reliability than that of LMP and LMP-ISM, and its reliability is getting better for long time creep prediction ($10^3~10^5$h).

  • PDF

GloSea5 모형의 성층권 예측성 검증 (Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment)

  • 정명일;손석우;임유나;송강현;원덕진;강현석
    • 대기
    • /
    • 제26권1호
    • /
    • pp.203-214
    • /
    • 2016
  • This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.

적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구 (A Study on Development of Strength Prediction Model for Construction Field by Maturity Method)

  • 김무한;남재현;길배수;최세진;장종호;강용식
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.

설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구 (Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence)

  • 전준협;손승배;정재길;이석재
    • 열처리공학회지
    • /
    • 제37권3호
    • /
    • pp.103-113
    • /
    • 2024
  • Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

차원해석을 통한 열간 사상압연중 온도해석모델 개발 (FE-based Strip Mean Temperature Prediction On-Line Model in Hot Strip Finishing Mill by using Dimensional Analysis)

  • 이중형;곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.176-179
    • /
    • 2003
  • The mean temperature prediction of strip is very important in hot strip finishing mill because of affecting on product quality and shape. Also, temperature can be used by basic information in other on-line control models with affecting control accuracy in factory. So, FE based on-line temperature model was developed for predicting strip mean temperature accurately in various process conditions and factory environments. There are many variables in affecting strip mean temperature in on-line states of factory. But some problems are occurred in considering all variables for making temperature model because of the bad efficiency of regression or fitting analysis. In this report, we have adopted dimensional analysis for solving these problems. We have many variables with dimensions affecting strip temperature but we are able to make non-dimensional variables less than dimensional variables from the combination of dimensional variables caused by PI-Theorem in fluid mechanics. The developed models are divided by two parts. The one is interstand temperature prediction model. The other is roll gap temperature model.

  • PDF

항공기 온도 관측 자료의 편향 보정 Part I: 존데와 비교를 통한 온도 편향 특성 분석 (Bias Correction for Aircraft Temperature Observation Part I: Analysis of Temperature Bias Characteristics by Comparison with Sonde Observation)

  • 권희내;강전호;권인혁
    • 대기
    • /
    • 제28권4호
    • /
    • pp.357-367
    • /
    • 2018
  • In this study, the temperature bias of aircraft observation was estimated through comparison with sonde observation prior to developing the temperature bias correction method at the Korea Institute of Atmospheric Prediction Systems (KIAPS). First, we tried to compare aircraft temperature with collocated sonde observations at 0000 UTC on June 22, 2012. However, it was difficult to estimate the temperature bias due to the lack of samples and the uncertainty of the sonde position at high altitudes. Second, we attempted a background innovation comparison for sonde and aircraft using KIAPS Package for Observation Processing (KPOP). The one month averaged background innovation shows the aircraft temperature have a warm bias against sonde for all levels. In particular, there is a globally distinct warm bias about 0.4 K between 200 hPa and 300 hPa corresponding to flight level. Spatially, most of the areas showed the warm bias except for below 300 hPa in some part of China at 0000 and 1200 UTC and below 850 hPa in Australia at 0000 UTC. In general, the temperature bias was larger at 1200 UTC than 0000 UTC. Based on the estimated temperature bias, we have applied the static bias correction method to the aircraft temperature observation. As a result, the warm bias of the aircraft temperature has decreased at most levels, but a slight cold bias has occurred in some areas.

초기 연신율법을 이용한 크리프 수명예측 평가 (Evaluation on the Creep Life Prediction Using Initial Strain Method)

  • 공유식;임만배;이상필;윤한기;오세규
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1069-1076
    • /
    • 2002
  • The high temperature creep behavior of heat machine systems such as aircraft engines, boilers and turbines in power plants and nuclear reactor components have been considered as an important and needful fact. There are considerable research results available for the design of high temperature tube materials in power plants. However, few studies on the Initial Strain Method (ISM) capable of securing repair, maintenance, cost loss and life loss have been made. In this method, 3 long time prediction Of high temperature creep characteristics can be dramatically induced through a short time experiment. The purpose of present study is to investigate the high temperature creep lift of Udimet 720, SCM 440-STD61 and 1Cr-0.5Mo steel using the ISM. The creep test was performed at 40$0^{\circ}C$ to $700^{\circ}C$ under a pure loading. In the prediction of creep life for each materials, the equation of ISM was superior of Larson-Miller Parameter(LMP). Especially, the long time prediction of creep life was identified to improve the reliability.

다중회귀분석을 이용한 임하호 유입하천의 수온예측 (Water-Temperature Prediction of Streams Entering into Imha Reservoir using Multi-Regnssion Method)

  • 이용곤;이상욱;고덕구
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.919-925
    • /
    • 2006
  • The regression models for the water temperatures of Ban Byeon Stream and Yong Jeon stream were developed using multi-regression method. It was also investigated that the applicability of the stream temperature prediction to two-dimensional numerical simulation to predict the vertical water temperature in Imha Reservoir. Air temperature and dew point as independent variables were selected to be applicable to cases with the different variation of flow rates. The data division of water temperature using a cutoff flow rate of $20m^3/s$ was found to reduce the prediction error of the stream temperature. The mean absolute percent error of the numerical simulation results of the vertical water temperature in Imha Reservoir using the regression models was 11%, which was only 4.3% lager than the simulation result using the measured stream temperature. Therefore, the regression models of the stream temperatures using multi-regression method applied in this study could be applied to predict the vertical water temperature in Imha Reservoir with a good accuracy.