• 제목/요약/키워드: temperature of degradation

검색결과 2,181건 처리시간 0.027초

토양 수분, 온도, 특성이 imazamethabenz 분해에 미치는 영향 (Effects of Moisture, Temperature, and Characteristics of two Soils on Imazamethabenz Degradation)

  • 주진호
    • 한국토양비료학회지
    • /
    • 제34권4호
    • /
    • pp.245-254
    • /
    • 2001
  • Imazamethabenz 분해에 미치는 토양수분, 온도와 토양특성에 관한 연구를 위하여 두 토양 (1.5% 유기물 함량과 pH 8.0인 Declo sandy loam 토양과 2.1% 유기물 함량과 pH 7.7인 Pancheri silt loam인 토양)이 사용되었다. 토양은 12 주간 조절된 조건 하에서 incubation되었다. 처리는 3개의 토양 수분 (45, 75, 100% field capacity)과 2개의 토양온도로서 factorial arrangement되었다. Imazamethabenz의 분해는 모든 토양수분-토양온도에서 대수직선관계를 나타냈으며, 토양온도와 토양 수분이 증가함에 비례하여 증가되는 경향을 보였다. 토양수분 효과는 토양 수분이 45에서 75%의 field capacity로 증가하였을 때가 75에서 100% 증가한 경우에 비해 더욱 크게 나타났으며, imazamethabenz의 분해는 Pancheri silt loam에서 더욱 빨리 일어났다. X-ray diffraction의 분석에 의하면 Pancheri silt loam 토양은 점토에 hydroxy interlayer를 함유하고 있어, 즉, 보다 적은 양의 imazamethabenz를 흡착할 수 있기 때문에 분해가 빨리 일어난 것이라 생각된다. Imazamethabenz로부터의 첫 번째 생성물인 imazamethabenz acid의 생성은 대부분의 토양수분-토양 온도에서 2차 방정식의 경향을 따랐는데, 초기에는 증가한 후 점치 감소하였다.

  • PDF

필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가 (Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test)

  • 김덕재;윤영주;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가

  • 김환;이권용;김대준;이명현;서원선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.91-94
    • /
    • 2003
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear. Alumina and zirconia (3Y-TZP) are using in clinical application worldwide and there are many good test reports. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite having low temperature degradation-free character and high fracture tough . was developed and it leads the lower wear 3f polyethylene than alumina and zirconia. In the present study, in order to optimise the microstructure of low temperature degradation (LTD)-free zirconia/alumina composite for the best wear resistance of polyethylene, various compositions of (LTD)-free zirconia/alumina composites were fabricated, and the sliding wear of UHMWPE against these novel composites were examined and compared with that against alumina and zirconia ceramics used for total hip joint heads.

  • PDF

Comparison of light-induced degradation and regeneration in P-type monocrystalline full aluminum back surface field and passivated emitter rear cells

  • Cho, Eunhwan;Rohatgi, Ajeet;Ok, Young-Woo
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1600-1604
    • /
    • 2018
  • This paper reports on a systematic and quantitative assessment of light induced degradation (LID) and regeneration in full Al-BSF and passivated emitter rear contact cells (PERC) along with the fundamental understanding of the difference between the two. After LID, PERC cells showed a much greater loss in cell efficiency than full Al-BSF cells (~0.9% vs ~0.6%) because the degradation in bulk lifetime also erodes the benefit of superior BSRV in PERC cells. Three main regeneration conditions involving the combination of heat and light ($75^{\circ}C/1\;Sun/48h$, $130^{\circ}C/2\;Suns/1.5h$ and $200^{\circ}C/3\;Suns/30s$) were implemented to eliminate LID loss due to BO defects. Low temperature/long time ($75^{\circ}C/48h$) and high temperature/short time ($200^{\circ}C/30s$) regeneration process was unable to reach 100% stabilization. The intermediate temperature/time ($130^{\circ}C/1.5h$) generation achieved nearly full recovery and stabilization (over 99%) for both full Al-BSF and PERC cells. We discussed the effect of temperature, time and suns in regeneration mechanism for two cells.

열열화된 PVC 케이블의 부분방전 진단 (Partial Discharge Diagnosis of Thermal Degradated PVC Cable)

  • 송기태;이성일
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.208-214
    • /
    • 2011
  • In this thesis, the partial discharge according to applied voltage and variations of cross-sectional area and length of the conductor related to general condition for using cable was measured in order to study degradation diagnosis for 2-Core cable of the PVC insulator used in industrial fields for other safety installations. Also the thermal degradation conditions under various installation circumstances of cables were studied by assuming degradation conditions with each different degradation rate (50%, 67%, 100%) such as variation in degradated temperature, thermal exposure time, normal state, partially degradated state and overall degradated state for thermal degradation diagnosis. The quantity of electric discharge (V-Q) according to applied voltage was measured for measurement of inception voltage and extinction voltage. The quantity of electric discharge and the number of electric discharge (Q-N) were measured with applied voltage kept constantly. In addition, pictures were taken using SEM (scanning electron microscope) to compare the surface of external insulator to degradated state of internal insulator according to thermal degradation temperature and also compare the surface of external insulator to degradated surface state of internal insulator according exposure time of cables to thermal stress.

Preformulation Study of Prokidin : Chemical Stability

  • Lee, Yun-Jin;Chun, In-Koo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.88-88
    • /
    • 2001
  • The effects of pH and temperature on the degradation of prokidn in various buffered aqueous solutions(pH 1.32~9.66) and temperatures (35, 45 and 6$0^{\circ}C$ were investigated. The effect of ionic strength on the degradation of prokidin was also measured by varying ionic strength (0.0466~1.5) at pH 1.35 and 45$^{\circ}C$ The effect of metal ions on the degradation of prokidin at pH 7.35 and 3.98 was observed. The degradation of prokidin followed the pseudo- first- order kinetics. The degradation rate of prokidin showed pH-dependent and temperature-dependent patterns. Prokidin was very stable at the pH below 3.95, where half-lives at 35, 45 and 6$0^{\circ}C$were 294, 206 and 107 day, respectively. However, it degraded very rapidly at pH above 6.49; the half-lives at 35, 45 and 6$0^{\circ}C$were 60, 25 and 13 day, respectively. As ionic strength increased, the degradation rate of prokidin increased. Some metal ions increased the degradation rate in the rank order of Mn > Fe > Cu >Fe On the other hand. other metal ions such as Bi, Ba. Zn, Ni, Co did not show unfavorable effect.

  • PDF

완충 수용액중 pH, 온도, 이온강도 및 금속이온이 Aucubin의 분해에 미치는 영향 (Influence of pH, Temperature, Ionic Strength and Metal Ions on the Degradation of an Iridoid Glucoside, Aucubin, in Buffered Aqueous Solutions)

  • 전인구;조영미
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권3호
    • /
    • pp.239-247
    • /
    • 1995
  • The physico-chemical stability of aucubin, a hepatoprotective iridoid glucoside, in buffered aqueous solutions was studied using a stability-indicating reversed-phase high performance liquid chromatography. The degradation of aucubin followed the pseudo-first-order kinetics. In strong acidic regions, aucubin was rapidly degraded by the specific acid catalysis, forming dark brown precipitates. From the rate-pH profiles, it was found that aucubin was most stable at the pH of about 10. From the temperature dependence of degradation, activation energies for aucubin at pH 2.1 and 4.9 were calculated to be 22.0 and 24.3 kcal/mole, respectively. The shelf-life $(t_{90%})$ for aucubin at pH 9.07 and $20^{\circ}C$ was predicted to be about 603 days. A higher ionic strength accelerated the degradation of aucubin at pH 4.01. The effect of metal ions on the degradation rate of aucubin at pH 7.16 was in the rank order of $Cu^{2+}\;>\;Fe^{3+}\;>\;Co^{2+}\;>\;Fe^{2+}\;>\;Mg^{2+}$. On the other hand, $Mn^{2+}\;and\;Ba^{2+}$ slowed the degradation rate.

  • PDF

Syntrophic Propionate Degradation Response to Temperature Decrease and Microbial Community Shift in an UASB Reactor

  • Ban, Qiaoying;Li, Jianzheng;Zhang, Liguo;Jha, Ajay Kumar;Zhang, Yupeng;Ai, Binling
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.382-389
    • /
    • 2013
  • Propionate is an important intermediate product during the methane fermentation of organic matter, and its degradation is crucial for maintaining the performance of an anaerobic digester. In order to understand the effect of temperature on propionate degradation, an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater containing propionate as a sole carbon source was introduced. Under the hydraulic retention time (HRT) of 10 h and influent propionate of 2,000 mg/l condition, propionate removal was above 94% at 30-$35^{\circ}C$, whereas propionate conversion was inhibited when temperature was suddenly decreased stepwise from $30^{\circ}C$ to $25^{\circ}C$, to $20^{\circ}C$, and then to $18^{\circ}C$. After a long-term operation, the propionate removal at $25^{\circ}C$ resumed to the value at 30- $35^{\circ}C$, whereas that at $20^{\circ}C$ and $18^{\circ}C$ was still lower than the value at $35^{\circ}C$ by 8.1% and 20.7%, respectively. Microbial community composition analysis showed that Syntrophobacter and Pelotomaculum were the major propionate-oxidizing bacteria (POB), and most POB had not changed with temperature decrease in the UASB. However, two POB were enriched at $18^{\circ}C$, indicating they were low temperature tolerant. Methanosaeta and Methanospirillum were the dominant methanogens in this UASB and remained constant during temperature decrease. Although the POB and methanogenic composition hardly changed with temperature decrease, the specific $COD_{Pro}$ removal rate of anaerobic sludge (SCRR) was reduced by 21.4%-46.4% compared with the control ($35^{\circ}C$) in this system.

고전압 SiO2 절연층 nMOSFET n+ 및 p+ poly Si 게이트에서의 Positive Bias Temperature Instability 열화 메커니즘 분석 (Analysis of Positive Bias Temperature Instability Degradation Mechanism in n+ and p+ poly-Si Gates of High-Voltage SiO2 Dielectric nMOSFETs)

  • 윤여혁
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.180-186
    • /
    • 2023
  • 본 논문은 4세대 VNAND 공정으로 만들어진 고전압 SiO2 절연층 nMOSFET의 n+ 및 p+ poly-Si 게이트에서의 positive bias temperature instability(PBTI) 열화에 대해 비교하고 각각의 메커니즘에 대해 분석한다. 게이트 전극 물질의 차이로 인한 절연층의 전계 차이 때문에 n+/nMOSFET의 열화가 p+/nMOSFET의 열화보다 더 클 것이라는 예상과 다르게 오히려 p+/nMOSFET의 열화가 더 크게 측정되었다. 원인을 분석하기 위해 각각의 경우에 대해 interface state와 oxide charge를 각각 추출하였고, 캐리어 분리 기법으로 전하의 주입과 포획 메커니즘을 분석하였다. 그 결과, p+ poly-Si 게이트에 의한 정공 주입 및 포획이 p+/nMOSFET의 열화를 가속시킴을 확인하였다.

초음파를 이용한 수용액 속의 MTBE 분해 특성 연구 (A Study on the Degradation Properties of MTBE in Solution using Ultrasound)

  • 김희석;양인호;오재일;허남국;정상조
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.522-529
    • /
    • 2009
  • To supply safe drinking water to areas lacking in water supply and drainage system, such as rural area and military bases in proximity to Demilitarized Zone, effective method for treating organic contaminants such as MTBE is required. This study focuses on seeking optimal conditions for effective degradation of MTBE using a bath type ultrasound reactor. Effectiveness of MTBE degradation by ultrasound is dependent on the frequency, power, temperature, treatment volume, initial concentration, catalyst, etc. In this study the degradation rate of MTBE by ultrasound was proportional to power/unit volume ratio and removal is relatively more efficient for 0.1 mM than for 1 mM of MTBE solution. Efficiency of ultrasound treatment for 1 mM MTBE solution was enhanced under bath temperature of $30^{\circ}C$ compared to $4^{\circ}C$, but the temperature effect was negligible for 0.1 mM MTBE solution. Also for 0.1 mM MTBE solution, effect of catalyst such as $TiO_2$ and $Fe^0$ on treatment speed was negligible, and zeolite even increases the time taken for the degradation. Under these specific experimental conditions of this study, the most determinant factor for degradation rate of MTBE in solution was frequency and power of ultrasound. The results have shown that a continuous ultrasound reactor system can be used for small scale remediation of organically polluted groundwater, under optimal conditions.