DOI QR코드

DOI QR Code

Comparison of light-induced degradation and regeneration in P-type monocrystalline full aluminum back surface field and passivated emitter rear cells

  • Cho, Eunhwan (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Rohatgi, Ajeet (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Ok, Young-Woo (School of Electrical and Computer Engineering, Georgia Institute of Technology)
  • Received : 2018.07.11
  • Accepted : 2018.10.17
  • Published : 2018.12.31

Abstract

This paper reports on a systematic and quantitative assessment of light induced degradation (LID) and regeneration in full Al-BSF and passivated emitter rear contact cells (PERC) along with the fundamental understanding of the difference between the two. After LID, PERC cells showed a much greater loss in cell efficiency than full Al-BSF cells (~0.9% vs ~0.6%) because the degradation in bulk lifetime also erodes the benefit of superior BSRV in PERC cells. Three main regeneration conditions involving the combination of heat and light ($75^{\circ}C/1\;Sun/48h$, $130^{\circ}C/2\;Suns/1.5h$ and $200^{\circ}C/3\;Suns/30s$) were implemented to eliminate LID loss due to BO defects. Low temperature/long time ($75^{\circ}C/48h$) and high temperature/short time ($200^{\circ}C/30s$) regeneration process was unable to reach 100% stabilization. The intermediate temperature/time ($130^{\circ}C/1.5h$) generation achieved nearly full recovery and stabilization (over 99%) for both full Al-BSF and PERC cells. We discussed the effect of temperature, time and suns in regeneration mechanism for two cells.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning

References

  1. J. Schmidt, R. Hezel, light-induced degradation in CZ silicon solar cells: fundamental understanding and strategies for its avoidance, 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, 2002, pp. 321-325.
  2. S. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe, Comparison of boron‐ and gallium‐doped p-type Czochralski silicon for photovoltaic application, Prog. Photovoltaics Res. Appl. 7 (1999) 463-469. https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H
  3. J. Knobloch, S. Glunz, V. Henninger, W. Warta, W. Wettling, F. Schomann, W. Schmidt, A. Endros, K. Munzer, 21% efficient solar cells processed from Czochralski grown silicon, Proceedings of the 13th European Photovoltaic Solar Energy Conference, WIP Renewable Energies Nice, France, 1995, pp. 9-12.
  4. A. Das, A. Rohatgi, The impact of cell design on light induced degradation in p-type silicon solar cells, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, IEEE, 2011, pp. 000158-000164.
  5. F. Wolny, T. Weber, M. Muller, G. Fischer, Light induced degradation and regeneration of high efficiency Cz PERC cells with varying base resistivity, Energy Procedia 38 (2013) 523-530. https://doi.org/10.1016/j.egypro.2013.07.312
  6. J. Schmidt, K. Bothe, Structure and transformation of the metastable boron-and oxygen-related defect center in crystalline silicon, Phys. Rev. B 69 (2004) 024107. https://doi.org/10.1103/PhysRevB.69.024107
  7. K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen‐related Carrier lifetime limit in mono and multicrystalline silicon, Prog. Photovoltaics Res. Appl. 13 (2005) 287-296. https://doi.org/10.1002/pip.586
  8. T. Niewelt, J. Schon, W. Warta, S.W. Glunz, M.C. Schubert, Degradation of crystalline silicon due to boron-oxygen defects, IEEE J. Photovolt. 7 (2017) 383-398. https://doi.org/10.1109/JPHOTOV.2016.2614119
  9. T. Hicks, A. Organ, N. Riley, Oxygen transport in magnetic Czochralski growth of silicon with a non-uniform magnetic field, J. Cryst. Growth 94 (1989) 213-228. https://doi.org/10.1016/0022-0248(89)90621-0
  10. C. Schmiga, H. Nagel, J. Schmidt, 19% efficient n‐type Czochralski silicon solar cells with screen-printed aluminium‐alloyed rear emitter, Prog. Photovoltaics Res. Appl. 14 (2006) 533-539. https://doi.org/10.1002/pip.725
  11. V. Meemongkolkiat, K. Nakayashiki, A. Rohatgi, G. Crabtree, J. Nickerson, T.L. Jester, The effect of the variation in resistivity and lifetime on the solar cells performance along the commercially grown Ga-and B-doped Czochralski ingots, Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, IEEE, 2005, pp. 1115-1118.
  12. M. Binns, J. Appel, J. Guo, H. Hieslmair, J. Chen, T. Swaminathan, E. Good, Indium-doped mono-crystalline silicon substrates exhibiting negligible lifetime degradation following light soaking, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE, 2015, pp. 1-6.
  13. E. Cho, J.-H. Lai, Y.-w. Ok, A.D. Upadhyaya, A. Rohatgi, M. Binns, J. Appel, J. Guo, H. Fang, E. Good, Light-induced degradation free and high efficiency p-type indium-doped PERC solar cells on Czochralski silicon, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE, 2015, pp. 1-4.
  14. E. Cho, Y.-W. Ok, A.D. Upadhyaya, M.J. Binns, J. Appel, J. Guo, A. Rohatgi, P-type indium-doped passivated emitter rear solar cells (PERC) on Czochralski silicon without light-induce degradation, IEEE J. Photovolt. 6 (2016) 795-800. https://doi.org/10.1109/JPHOTOV.2016.2547578
  15. S. Wilking, C. Beckh, S. Ebert, A. Herguth, G. Hahn, Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes, Sol. Energy Mater. Sol. Cell. 131 (2014) 2-8. https://doi.org/10.1016/j.solmat.2014.06.027
  16. A. Herguth, G. Hahn, Kinetics of the boron-oxygen related defect in theory and experiment, J. Appl. Phys. 108 (2010) 114509. https://doi.org/10.1063/1.3517155
  17. A. Herguth, G. Schubert, M. Kas, G. Hahn, Investigations on the long time behavior of the metastable boron-oxygen complex in crystalline silicon, Prog. Photovoltaics Res. Appl. 16 (2008) 135-140. https://doi.org/10.1002/pip.779
  18. J.-R. Huang, Y.-F. Lin, K. Liang, S. Su, S.H. Chen, L.-W. Cheng, Investigation of light-induced regeneration phenomena on p-type Cz PERC cells, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE, 2015, pp. 1-3.
  19. K. Lee, M. Kim, J. Lim, J. Ahn, M. Hwang, E. Cho, Natural recovery from LID: regeneration under field conditions, Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, 2015, pp. 1835-1837.
  20. S. Wilking, M. Forster, A. Herguth, G. Hahn, From simulation to experiment: understanding BO regeneration kinetics, Sol. Energy Mater. Sol. Cell. 142 (2015) 87-91. https://doi.org/10.1016/j.solmat.2015.06.012
  21. S. Wilking, A. Herguth, G. Hahn, Influence of hydrogen on the regeneration of boron-oxygen related defects in crystalline silicon, J. Appl. Phys. 113 (2013) 194503. https://doi.org/10.1063/1.4804310
  22. M. Cascant, N. Enjalbert, R. Monna, S. Dubois, Influence of various p-type Czochralski silicon solar cell architectures on light-induced degradation and regeneration mechanisms, Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014.
  23. A. Herguth, R. Horbelt, S. Wilking, R. Job, G. Hahn, Comparison of BO Regeneration dynamics in PERC and Al-BSF solar cells, Energy Procedia 77 (2015) 75-82. https://doi.org/10.1016/j.egypro.2015.07.012
  24. D.C. Walter, T. Pernau, J. Schmidt, Ultrafast lifetime regeneration in an industrial belt-line furnace applying intense illumination at elevated temperature, Proc. 32nd EU PVSEC, 2016, p. 469.
  25. E. Cho, Fabrication and Modeling of High Efficiency and Stabilized P-type Passivated Emitter Rear Silicon Solar Cells (PERC), Georgia Institute of Technology, 2017.
  26. F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature, Sol. Energy Mater. Sol. Cell. 142 (2015) 83-86. https://doi.org/10.1016/j.solmat.2015.06.015

Cited by

  1. Output power behavior of passivated emitter and rear cell photovoltaic modules during early installation stage: influence of light-induced degradation vol.58, pp.10, 2019, https://doi.org/10.7567/1347-4065/ab42ba