Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10008

Syntrophic Propionate Degradation Response to Temperature Decrease and Microbial Community Shift in an UASB Reactor  

Ban, Qiaoying (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Li, Jianzheng (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Zhang, Liguo (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Jha, Ajay Kumar (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Zhang, Yupeng (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Ai, Binling (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 382-389 More about this Journal
Abstract
Propionate is an important intermediate product during the methane fermentation of organic matter, and its degradation is crucial for maintaining the performance of an anaerobic digester. In order to understand the effect of temperature on propionate degradation, an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater containing propionate as a sole carbon source was introduced. Under the hydraulic retention time (HRT) of 10 h and influent propionate of 2,000 mg/l condition, propionate removal was above 94% at 30-$35^{\circ}C$, whereas propionate conversion was inhibited when temperature was suddenly decreased stepwise from $30^{\circ}C$ to $25^{\circ}C$, to $20^{\circ}C$, and then to $18^{\circ}C$. After a long-term operation, the propionate removal at $25^{\circ}C$ resumed to the value at 30- $35^{\circ}C$, whereas that at $20^{\circ}C$ and $18^{\circ}C$ was still lower than the value at $35^{\circ}C$ by 8.1% and 20.7%, respectively. Microbial community composition analysis showed that Syntrophobacter and Pelotomaculum were the major propionate-oxidizing bacteria (POB), and most POB had not changed with temperature decrease in the UASB. However, two POB were enriched at $18^{\circ}C$, indicating they were low temperature tolerant. Methanosaeta and Methanospirillum were the dominant methanogens in this UASB and remained constant during temperature decrease. Although the POB and methanogenic composition hardly changed with temperature decrease, the specific $COD_{Pro}$ removal rate of anaerobic sludge (SCRR) was reduced by 21.4%-46.4% compared with the control ($35^{\circ}C$) in this system.
Keywords
Upflow anaerobic sludge blanket (UASB) reactor; temperature; propionate degradation; propionate-oxidizing bacteria; methanogens;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ariesyady, H. D., T. Ito, K. Yoshiguchi, and S. Okabe. 2007. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an UASB digester sludge. Appl. Microbiol. Biotechnol. 75: 673-683.   DOI
2 Barredo, M. S. and L. M. Evison. 1991. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl. Environ. Microbiol. 57: 1764-1769.
3 Boone, D. R. and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626-632.
4 Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim. 2008. The effects of digestion and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99: 1-6.   DOI   ScienceOn
5 Chen, S. and X. Dong. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55: 2257-2261.   DOI   ScienceOn
6 Chen, S., X. Liu, and X. Dong. 2005. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 55: 1319-1324.   DOI   ScienceOn
7 Ferry, J. G., P. H. Smith, and R. S. Wolfe. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp. nov. Int. J. Syst. Bacteriol. 24: 465-469.   DOI
8 de Bok, F. A. M., H. J. M. Harmsen, C. M. Plugge, M. C. de Vries, A. D. L. Akkermans, W. M. de Vos, and A. J. M. Stams. 2005. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 55: 1697- 1703.   DOI   ScienceOn
9 Demirel, B. and P. Scherer. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: A review. Rev. Environ. Sci. Biotechnol. 7: 173-190.   DOI   ScienceOn
10 Rastogi, G., D. Ranade, T. Y. Yeole, M. S. Patole, and Y. S. Shouche. 2008. Investigation of methanogen population structure in biogas reactor by molecular characterization of methylcoenzyme M reductase A (mcrA) genes. Bioresour. Technol. 99: 5317-5326.   DOI   ScienceOn
11 Rincón, B., F. Raposo, R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2005. Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phase olive mill solid wastes at low organic loading rates. J. Biotechnol. 121: 534-543.
12 Worm, P., A. J. M. Stams, X. Cheng, and C. M. Plugge. 2011. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157: 280-289.   DOI   ScienceOn
13 Shigematsu, T., S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, and K. Kida. 2006. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 72: 401-415.   DOI   ScienceOn
14 Uyanik, S. 2003. Granule development in anaerobic baffled reactor. Turkish J. Eng. Environ. Sci. 27: 131-144.
15 Westerholm, M., B. Müller, V. Arthurson, and A. Schnürer. 2011. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 26: 347-353.   DOI
16 Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71: 7493-7503.   DOI   ScienceOn
17 Yamada, T., H. Imachi, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306.   DOI   ScienceOn
18 Dhaked, R. K., C. K. Waghmare, S. I. Alam, D. V. Kamboj, and L. Singh. 2003. Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature. Bioresour. Technol. 87: 299-303.   DOI   ScienceOn
19 Bassam, B. J., G. Caetano-Anollés, and P. M Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.   DOI   ScienceOn
20 APHA. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (Ed).
21 Grabowski, A., B. J. Tindall, V. Bardin, D. Blanchet, and C. Jeanthon. 2005. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 55: 1113-1121.   DOI   ScienceOn
22 Hajarnis, S. R. and D. R. Ranade. 1994. Effect of propionate toxicity on some methanogens at different pH values and in combination with butyrate, pp. 46-49. Proceedings of 7th International Symposium on Anaerobic Digestion.
23 Imachi, H., Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi, and H. Harada. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1729- 1735.   DOI
24 Li, J., L. Zhang, Q. Ban, A. K. Jha, and Y. Xu. 2012. Diversity and distribution of methanogenic archaea in an anaerobic baffled reactor (ABR) treating sugar refinery wastewate. J. Microbiol. Biotechnol. 23: 137-143.
25 Imachi, H., S. Sakai, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1487- 1492.   DOI   ScienceOn
26 Keyser, M., R. C. Witthuhn, C. Lamprecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29: 77-84.   DOI   ScienceOn
27 Kosaka, T., S. Kato, T. Shimoyama, S. Ishii, T. Abe, and K. Watanabe. 2008. The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 18: 442-448   DOI   ScienceOn
28 Li, J., Q. Ban, L. Zhang, and A. K. Jha. 2012. Syntrophic propionate degradation in anaerobic digestion: A review. Int. J. Agric. Biol. 5: 843-850.
29 Zheng, D. and L. Raskin. 2000. Quantification of Methanosaeta species in anaerobic bioreactors using genus- and speciesspecific hybridization probes. Microb. Ecol. 39: 246-262.
30 Zhang, L., J. Li, Q. Ban, J. He, and A. K. Jha. 2012. Metabolic pathways of hydrogen production in fermentative acidogenic microflora. J. Microbiol. Biotechnol. 22: 668-673.   DOI   ScienceOn
31 Okabe, S., M. Oshiki, Y. Kamagata, N. Yamaguchi, M. Toyofuku, Y. Yawata, et al. 2010. A great leap forward in microbial ecology. Microbes Environ. 25: 230-240.   DOI   ScienceOn
32 Lettinga, G., J. Field, J. Van Lier, G. Zeeman, and L. W. Huishoff Pol. 1997. Advanced anaerobic waste water treatment in the near future. Water Sci. Technol. 35(10): 5-12.   DOI   ScienceOn
33 Liu, Y. and W. B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N.Y. Acad. Sci. 1125: 171-189.   DOI   ScienceOn
34 Ma, J., L. J. Mungoni, W. Verstraete, and M. Carballa. 2009. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation. Bioresour. Technol. 100: 3477- 3482.   DOI   ScienceOn
35 Müller, N., P. Worm, B. Schink, A. J. M. Stams, and C. M. Plugge. 2010. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environ. Microbiol. Rep. 2: 489-499.   DOI   ScienceOn
36 Narihiro, T., T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, and Y. Sekiguchi. 2012. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res. 46: 2167-2175.   DOI   ScienceOn
37 Nedwell, D. B. 1999. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111.   DOI
38 Parawira, W., J. S. Read, B. Mattiasson, and L. Björnsson. 2008. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32: 44-50.   DOI   ScienceOn
39 Pullammanappallil, P. C., D. P. Chynoweth, G. Lyberatos, and S. A. Svoronos. 2001. Stable performance of anaerobic digestion in the presence of a high concentration propionic acid. Bioresour. Technol. 78: 165-169.   DOI   ScienceOn