• 제목/요약/키워드: temperature network

검색결과 1,452건 처리시간 0.028초

신경회로망을 이용한 예측 PID 제어기에 관한 연구 (A Study on Predictive PID Controller using Neural Network)

  • 윤광호
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.247-253
    • /
    • 1999
  • In this paper predictive PID control system using neural network (NNPPID) is proposed to control temperature system. NNPPID is composed of neural network predictor forecasts the future output of plant based on the present input and output of plant. Neural self-tuner yields parameters of PID controller. Experiments prove that NNPPID temperature control system has better performance than conventional PID control.

  • PDF

유비쿼터스 센서 네트워크을 이용한 홈네트워크 시스템 구현에 관한 연구 (Study about the home network system implementation that used an ubiquitous sensor network)

  • 남상엽;박춘명
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.479-480
    • /
    • 2007
  • It is study about implementation of the home network system that used an ubiquitous sensor network and an embedded system in this paper. PXA270 and CC2420 were used, and the home server of a wireless sensor home network system composed it. A wireless control system is composed of a gas valve, a DC motor, a lamp and a door rock. A wireless detection system is composed of a gas detection sensor, a movement detection sensor, an extension detection sensor The wireless detection system that was an environment sensing system was composed of temperature, humidity, mic, illuminance, a speed-up, infrared rays temperature sensing module, and modular, other RFID established an USB camera, and an ubiquitous home network was composed.

  • PDF

Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method

  • Lee, Jong-Han;Lee, Jong-Jae;Cho, Baik-Soon
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.177-186
    • /
    • 2012
  • The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete. However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124 data sets with eleven parameters: nine concrete composition parameters (the ratio of water-cement, the percentage of fine and coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

수평원통 관에서 감온액정을 이용한 난류유동의 온도 및 속도장에 관한 실험적 연구 (An Experimental Study on Temperature and Velocity Fields of the Turbulent Flows Horizontal Cylindrical Tube by Using Thermo-sensitive Liquid Crystal)

  • 장태현;도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.921-929
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. To determine some characteristics of the turbulent flow, 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the color of the liquid crystal versus temperature using various approaches (TLC technique: Thermochromic Liquid Crystal), and a neural-network algorithm was applied to the color-to-temperature calibration. This study shoud the temperature and time-mean velocity distribution for Re = 2,436, 2,500 and 2,724 along longitudinal sections and the results appear to be physically reasonable.

레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측 (Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes)

  • 우현구
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

Material Recognition Using Temperature Response Curve Fitting and Fuzzy Neural Network

  • Young-C. Lim;Park, Jin-K;Ryoo, Young-J;Jang, Young-H;Kim, I-G.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.15-24
    • /
    • 1995
  • This paper describes a system that can be used to recognize an unknown material regardless of the fuzzy neural network(FNN). There are some problems to realize the recognition system using temperature response. It requires too many memories to store the vast temperature response data and it has to be filtered to remove noise which occurs in experiment. And the temperature response is influenced by the change of ambient temperature. So, this paper proposes a practical method using curve fitting to remove above problems of memories and noise. and FNN is proposed to overcome the problem caused by the change of ambient temperature. Using the FNN which is learned by temperature responses on fixed ambient. Temperatures and known thermal conductivity, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be recognized by the thermal conductivity.

  • PDF

에폭시 경화물 DSC에 의한 유리전이 온도 측정의 분석조건 의존성 (The Effect of DSC Analysis Condition on the Glass Transition Temperature of curred Epoxy This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.)

  • 오무원;권혁삼
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 춘계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 1994
  • This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.

  • PDF

Smart Irrigation and Temperature Control for a Greenhouse System

  • Abinaya P;Swathika P
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.151-155
    • /
    • 2024
  • This project is designed with the aim to facilitate the farmer or gardener to engage in green house systems and to improve agricultural technology. In order to reduce continuous monitoring of the soil parameters, excess time consumption for the farmers and excessive usage of water, "Smart irrigation and temperature control for a greenhouse system" has been developed. There are two different ways to irrigate the land namely traditional irrigation methods and modern irrigation methods.

유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 1. 센서 네트워크 플랫폼 구축 (A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 1. the construction of sensor network platform)

  • 이영동;정완영
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.362-370
    • /
    • 2006
  • The wireless sensor network (WSN) based ECG and body temperature measuring system for ubiquitous health-care were designed and developed. The system was composed of a wireless sensor network node, base station and server computer for the continuous monitoring of ECG signals and body temperatures of patients at home or hospital. ECG signal and body temperature data, important vital signals which are commonly used in clinical and trauma care, were displayed on a graphical user interface (GUI). The data transfer from sensor nodes on patients' body to server computer was accomplished through a base-station connected to a server computer using Zigbee compatible IEEE802.15.4 standard wireless communication. Real-time as well as historical, ECG data of elderly persons or patients, can also be retrieved and played back to assist the diagnosis. The ubiquitous health care system presented in this study can effectively reduce social medical expenses, which will be increased greatly in the coming aging society.

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF