• Title/Summary/Keyword: temperature limit

Search Result 1,360, Processing Time 0.036 seconds

Review on Adaptability of Rice Varieties and Cultivation Technology According to Climate Change in Korea (기후변화에 따른 국내 벼 품종과 재배기술의 적응성에 관한 고찰)

  • Seo, Myung-Chul;Kim, Joon Hwan;Choi, Kyeong Jin;Lee, Yun-Ho;Sang, Wan-Gyu;Cho, Hyeon Suk;Cho, Jung-Il;Shin, Pyeong;Baek, Jae Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • In recent years, the temperature of Korea has been rapidly increasing due to global warming. Over the past 40 years, the temperature of Korea has risen by about 1.26℃ compared to that in the early 1980s. By region, the west region of the Gangwon Province was the highest at 1.76℃ and the Jeonnam Province was the lowest at 0.96℃. As the temperature continues to rise, it is expected that the rice yield will decrease in the future using the current standard cultivation method. As a result of global warming, the periods in which rice cultivation could be possible in regions each year has increased compared those to the past, showing a wide variety from 110 days in Taebaek to 180 days in Busan and Gwangyang. In addition, the transplanting time was delayed by 3-5 days in all regions. The average annual yield of rice showed an increasing trend when we analyzed the average productivities of developed varieties for cooked rice since the 1980s, especially in the early 1990s, which showed a rapid increase in productivity. The relationship between the average temperature at the time of development and the rice yield was divided into the periods before and after 1996. The higher the average temperature, the lower the yield of the developed varieties until 1996. However, since 1996, the increase in the average temperature did not show a trend in the productivity of the developed varieties. The climate change adaptability of developed rice varieties was investigated by analyzing the results of growing crops nationwide from 1999 to 2016 and the change in the annual yields of developed varieties and recently developed varieties as basic data to investigate the growth status of the crops in the country. As a result of annual comparisons of the yields of Taebongbyeo (2000) and Ungwangbyeo (2004) developed in the early 2000s for Odaebyeo, which was developed in the 1980s, the annual yields were relatively higher in varieties in the 2000s despite the increase in temperature. The annual yields of Samgwangbyeo (2003) and Saenuribyeo (2007), which were recently developed as mid-late-type varieties, were higher than those of an earlier developed variety called Chucheongbyeo, which was developed in the 1970s. Despite the rapid increase in temperature, rice cultivation technology and variety development are well adapted to climate change. However, since the biological potential of rice could reach its limit, it is necessary to develop continuous response technology.

Simulation Model of Two Dimensional Heat Transfer in Grain Bin (저장곡물(貯藏穀物) Bin내(內)의 삼차원(三次元) 열전달모형(熱傳達模型))

  • Han, Kwang Jin;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.118-127
    • /
    • 1985
  • The grain temperature is a crucial factor determining the deterioration rate of stored grain. Therefore, it is used to be predicted in order to evaluate the various stored methods rapidly and inexpensively. In this study, a mathematical model was developed to simulate the temperatures of grain stored in a cylinderical bin. It was formulated for the two dimensional heat transfer by the finite difference method. Then, it was verified statistically using the actual test deta and the predicted. The changes of grain temperature were analyed using the simulated data of one year for a safe stoarge and the following results were obtained: 1. Simulation model developed by the finite difference method was validated with the actual and the predicted grain temperatures and it's result showed that it could predict the grain temperature of storage bin reasonably well. 2. Grain temperature near the wall of storage bin were changed with $6-7^{\circ}C$ higher then average atmospheric temperature from June to September. Therefore, the parts of stored grain near the wall is supposed to be deteriorated fast. 3. When the dimension of bin diameter is about the same as the bed height, the changes of grain temperature of radial direction was higher than the verticals. 4. The predicted temperature showed that the grain temperature of which were from the end of April to mid October were higher than the safe storage limit at Yusung, Korea.

  • PDF

Studies on the Keeping Quality of Ultra High Temperature Processed Market Milk (초고온살균유(超高溫殺菌乳)의 보존성(保存性)에 관(關)한 연구(硏究))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 1979
  • These studies were carried out to investigate the freshness and bacteria of ultra high temperature processed market milks which treated and distributed in four districts: Kwangju, Daejon, Sungwhan and Seoul, and to elucidate their keeping qualities when stored in refrigerator and at room temperature. Various samples taken from the four districts were tested and the results obtained were as follows. 1. Samples from three districts retained acidities fit for standard for 9 days and those from one district for 5 days when stored at $4^{\circ}C$. However, the periods were shortened to 1 day for samples of the three districts and to same day for those of one district when stored at $20^{\circ}C$. 2. Negative results were obtained from alcohol and boiling tests upto 10 days for samples of the three districts and upto 6 to 7 days for those of one district when stored at $4^{\circ}C$. But positive results were recorded after 2 days for samples of the three districts and after 1 day for those of one district when stored at $20^{\circ}C$. 3. Total viable number of organisms did not exceed the standard limit upto 10 days for sample of one district, up to 7 days for those of two districts and upto 2 days for those of the other when stored at $4^{\circ}C$. But in case of storage at $20^{\circ}C$, samples of one district maintained viable titre below the limit for 1 day and samples of three districts for same day. 4. Initial number of psychrophilic were $4.8{\times}10^3/ml$ on an average. This titre was increased to $6.4{\times}10^7/ml$ gradually during 10 days when stored at $4^{\circ}C$, and to $5.2{\times}10^7/ml$ during 2 days. when stored at $20^{\circ}C$. 5. Number of thermoduric bacteria were below $10^2/ml$ for 10 days in samples of three districts and for 6 days in those of the other when stored at $4^{\circ}C$. However, in case of storage at $20^{\circ}C$, the titre exceeded $10^2/ml$ after 1 day in samples of three districts. 6. No coliform bacteria were detected in all samples from the four districts.

  • PDF

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

The High temperature stability limit of talc, $Mg_3Si_4O_{10}(OH)_2$ (활석 $Mg_3Si_4O_{10}(OH)_2$의 고온 안정영역에 관한 실험적 연구)

  • 조동수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.123-132
    • /
    • 1997
  • In the system $MgO-SiO_2-H_2O$, Talc[$Mg_3Si_4O_{10}(OH)_2$] has been synthesized hydrothermally at 200 MPa, $600^{\circ}C$ from the oxide mixture of the bulk composition of talc. The oxide mixture of the bulk composition of anthophyllite$[Mg_7Si_8O_{22}(OH)2]$ converted to talc, enstatite $(MgSiO_3)$, quartz at 200 MPa, $750^{\circ}C$ with excess of $H_2O$. In low to medium pressure metramorphism, enstatite-talc assemblage is metastable relative to anthophyllite with the reaction talc + 4 enstatite=anthophyllite (Greenwood, 1963). The high temperature stability of talc is bounded with the dehydration reaction to anthophyllite rather than that to enstatite(Greenwood, 1963; Chernosky et al., 1985). Therefore our experiment result assemblage, enstatite-talc-quatz at 200 MPa, $750^{\circ}C$ from oxide mixture of bulk compostion of anthophyllite is metastable assemblage. The hydrothermal experiment performed at 41 to 243 MPa, 680 to $760^{\circ}C$ with the starting material composed of synthetic talc, enstatite and quartz. Talc or enstatite grows during the runs and no extra phases including anthophyllite nucleated. Based on the increase or decrease of the each phase from run products, one of the possible reactions is talc=3 enstatite+quartz+H_2O$. The reversal bracket of the reaction is 699 to $700^{\circ}C$ at 100 MPa. Talc is stable up to $740^{\circ}C$ at 200 MPa and enstatite grow at $680^{\circ}C$, 40 MPa and at $760^{\circ}C$, 250 MPa. Though the high temperature limit of talc around 200 MPa is bounded thermodynamically by the reaction, 7 talc=3 anthophyllite+4 quartz+4 H_2O$, talc persisted throughout the previous reaction up to the reaction, talc=3 enstatite+quartz+$H_2O$.

  • PDF

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

The Air-stripping Process Conjugated with the Ultrasonic Treatment to Remove TOC in Groundwater around the LPG Underground Storage Cavern (탈기법과 초음파 처리법을 연계한 LPG 지하공동저장소 주변 오염지하수 내 TOC 제거)

  • Han, Yikyeong;Jun, Seongchun;Kim, Danu;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.511-519
    • /
    • 2022
  • In order to develop an air-stripping based remediation process to remove the TOC (Total Organic Carbon) in groundwater around the underground LPG storage cavern, the laboratory scale experiments at various conditions (change of air injection volume and temperature, the application of ultrasonic treatment, etc.) for two types of groundwater (initial TOC concentration of 608 mg/L and 153 mg/L, respectively). From results of experiment, as the air injection rate for stripping into groundwater increased from 2 L/min to 11 L/min and as the air-stripping time increased from 1 hour to 24 hour, the TOC removal efficiency of air-stripping increased. However, the TOC concentration of treated groundwater was higher than the discharge tolerance limit (100 mg/L) even after 24 hour stripping at the maximum air injection rate of 11 L/min. The main compounds of the TOC in groundwater were identified as methanol and propane and the long stripping time (more than 24 hour) was needed to separate the methanol from groundwater because of the affinity between water and methanol. At 20℃ and 4 L/min of air injection, the TOC removal efficiency increased to 59.1% after 24 hour air-stripping. When the temperature of groundwater increased to 30℃ and 40℃, the TOC removal efficiency increased up to 80.0% and 82.8%, suggesting that more than 24 hour air-stripping at 40℃ is needed to lower the TOC concentration to below 100 mg/L and the additional TOC removal process as well as the air-stripping is necessary. When the temperature increased to 60℃ and the ultrasonic treatment was conjugated with the air-stripping, the TOC removal efficiency increased to 87.8% within 5 hour stripping and the final TOC concentration (72.4 mg/L) was satisfied with the TOC discharge tolerance limit. The TOC removal efficiency for groundwater having low TOC concentration (153 mg/L) also showed similar removal efficiency of 89.7% (the final TOC concentration: 18.9 mg/L). Results in this study supported that the air-stripping conjugated with the ultrasonic treatment could remove successfully the TOC in groundwater around the underground LPG strorage cavern.

Thermal Inactivation of Listeria monocytogenes in Liquid Cultures during Microwave Radiation (Microwave 조사에 의한 Listeria monocytogenes의 불활성에 관한 연구)

  • Lee, J.Y.;Kim, J.W.;Lee, K.W.;Bae, H.C.
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.50-57
    • /
    • 1999
  • The purpose of this study was to determine the thermal inactivation of L. monocytogenes KCTC3443 in liquid culture heated in the controlled microwave system and in the conventional heating method. Furthermore, we have carried out a comparative study on the thermal and nonthermal microwave effects on microorganisms, pasteurized using a controlled microwave energy specially designed apparatuses and a water bath. For the automatic temperature control during microwave heating, the real time data acquisition and computation system is designed with BASIC routine. The automatic temperature control system used in the experiments perform relatively stable control at the experiment temperature of 55, 65, $75^{\circ}C$ and $85^{\circ}C$ for 30 minutes. The effects of microwave heating on liquid cultures was compared with that of conventional heating. The results show that microwave radiation, while being slightly quicker than conventional heating, still reduces effectively the number of pathogenic bacteria during heating for a limit time in liquid cultures. While no particular differences between microwave heating and conventional heating was not observed in the thermal inactivation of L. monocytogenes at 55, 65, $75^{\circ}C$ and $85^{\circ}C$ for 30 min., respectively. Microwave heating is, therefore, substantially not effective in inactivating L. monocytogenes in liquid culture than conventional heating method.

  • PDF

Hydroacoustic Observations on the Diel Distribution and Activity Patterns of Fishes in the East China Sea II -Activity Patterns during the Evening and Morning Transition Periods - (동중국해에 있어서 어족생물의 일주기적 유영행동특성에 관한 연구-I-획야 전이시간대의 유영행동특성-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.239-250
    • /
    • 1994
  • The vertical distribution and activity patterns of fishes during the evening and morning transitions between day and night were studied acoustically and by bottom trawling in November 1990-1992 in thermally stratified waters of the East China Sea. The acoustic data were collected from six stations with a scientific echo-sounder operating at two frequencies of 25 and 100kHz, and the echograms were used to determine the vertical distributions of fish. Biological sampling was accomplished by bottom trawling to identify fish species recorded on the echograms, and the species and length compositions were determined. At each station, vertical profiles of water temperature, salinity and dissolved oxygen were taken with a CTD system and were related to the diel movements and the depth distributions of fish. During the day most fish were within several meters above bottom, but began to migrate upwards just before sunset, and during the night they were dispersed in midwater. Prior to sunrise with a thermocline present, one group of the fish aggregation occurred in dense schools slightly above the thermocline, while the other group occurred with the numerous single fish-traces bellow it. These groups of aggregations rapidly began to migrate toward the bottom across the thermocline from about 40 min before sunrise. Trawl hauls in the bottom strata below the thermocline with the characteristic single fish traces yieled invariably catches dominated by snailfish and fishing frog with minor quantities of other species in all stations. Hence, the results indicate that snailfish and fishing frog were the dominated scatterers in the depth strata below the thermocline, and the single-fish recordings were mainly snailfish. The fish species such as anchovy and juvenile mackerel in bottom trawl catches is poorly represented in relation to the mesh selectivity of the trawl net, but their occurrence suggest that the fish-school recording above the thermocline were due to these species which migrated vertically across the thermocline, with a temperature gradient of about 8$^{\circ}C$, from the water layers near the bottom at night. Accordingly, we conclude that the vertical distribution and activity patterns of snailfish were strongly temperature dependent and in the termally stratified waters, the upper limit to diel activity was closely linked to the position of the thermocline.

  • PDF

Status of Automatization in Protected Horticultural Facilities and Prospect of Plant Factory in Korea (한국의 원예시설 자동화 현황 및 식물공장의 발전방향)

  • 윤진하
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.91-115
    • /
    • 1996
  • In the recent years, protected horticultural facilities have been modernized and glasshouses are also propagating in Korea, even most vegetables production are conducted in the traditional plastic houses covered with, for example, PVC film for just temperature keeping. It would limit the productivity and competitivity of the vegetable production industry without automatization and high quality year round production. A plant factory, aimed to produce vegetables in the limited areas, was initiated in Christensen farm, Denmark in 1957, and widely propagated in some developed countries. As it has the automatized system which enables to keep optimized environment conditions, it will be the best facility for high quality products as well as year round planned production. However, we have not even started the plant factory production. Since the plant factory is requiring lots of resources, besides plant cultivation technologies, such as environment control, automatic engineering and robotics, our approach to the development of plant factories should be minded on Practical Plant Factories considering our current farming practices and least capital needs rather than blindly employing the advanced technologies from developed countries. Thus, Korean plant factory development can be initiated with year round leaf vegetables production in NFT or DFT cultivation system instead of the moval bed system, in which aerial environment factors such as light, temperature, humidity and CO$_2$ concentration and root environment ones such as solution concentration, temperature, pH and water soluble oxygen shall be automatically controlled. And the seeding, seedling and transplanting operations shall be accomplished in the house entrance, and the harvesting and grading opreations shall be conducted in the house exit. For practical plant factories, environment control technologies including artificial light source, illumination and air conditioning, automatic management for nutrient solution and automatic production line of moval bed system, transplanting and harvest should be developed along with researches on the cost reduction of factory building construction.

  • PDF