• Title/Summary/Keyword: temperature gradient interaction chromatography

Search Result 4, Processing Time 0.018 seconds

Temperature Controllable HPLC Column for Preparative Fractionation of Polymers

  • Im, Kyu-Hyun;Park, Hae-Woong;Kim, Young-Tak;Chang, Tai-Hyun
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.544-548
    • /
    • 2008
  • An HPLC column with a self-contained temperature control device was constructed for preparative temperature programmed interaction chromatography. Two Peltier plates were attached to a large bore column ($120{\times}22\;mm$ i.d.) and the column temperature was controlled by PID mode feed back control. At a flow rate of 1.5 mL/min, the column temperature could be increased and decreased at a rate as high as $50^{\circ}C/min$ and $10^{\circ}C/min$, respectively, which is much faster than using a column jacket and bath/circulator. The rapid heating and cooling rates allows a high repetition rate of chromatographic fractionation. The performance of the temperature controllable column was demonstrated successfully by the fractionation of homo-polymer precursors from diblock copolymers.

Hydrophilic Interaction Liquid Chromatography (HILIC 분석법 개발을 위한 지능형 솔루션)

  • Matt James;Colin Pipe;Mark Fever;Jen Field;Seungho Chae
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.6.1-6.9
    • /
    • 2024
  • The document is a white paper on Hydrophilic Interaction Liquid Chromatography (HILIC) analysis method development. HILIC is a type of chromatography that uses an organic/aqueous mobile phase and a polar stationary phase. In HILIC, water is a strong solvent, and unlike in Reversed Phase Liquid Chromatography (RPLC), increasing the proportion of water in the mobile phase reduces the retention time of the analyte. The paper discusses when to consider HILIC analysis methods, the advantages of HILIC, and the challenges often encountered due to the lack of understanding of HILIC mechanisms compared to RPLC. It also provides a systematic flowchart for intelligent solutions for HILIC analysis method development, which includes a three-step approach for chromatography analysis method development. The first step involves gathering as much information as possible about the analyte (e.g., pKa, log P, log D). The second step involves analyzing the sample under different pH conditions using three HILIC columns in either isocratic or gradient mode to identify the suitable column/pH combination for the analyte. The third step involves optimizing the separation by investigating other parameters such as temperature and ionic strength, and assessing the robustness of the method. The paper emphasizes that the selection of the appropriate stationary/mobile phase combination, based on the differences between the HILIC stationary phases and the mobile phase pH, can provide high selectivity in the analysis. This step-by-step approach can help users develop an efficient analysis method.

  • PDF

Synthesis and Characterization of Star-shaped Aliphatic Polyester

  • Shin, Young-Cheol;Park, Kil-Yeong;Jin, Moon-Young;Hong, Sung-Kwon;Donghyun Cho;Taihyun Chang;Moonhor Ree
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2001
  • Several star-polymers with aliphatic cores were synthesized by ring opening polymerization (ROP) of $\xi$-caprolactone using stannous 2-ethyl-hexanoate as a catalyst. The star-polymers were thoroughly analyzed by MALDI-TOF mass spectrometry, temperature gradient interaction chromatography and $\^$13/C-NMR to obtain detailed information of the molecular structure. The imperfection of the star-polymers seemed to be originated from restricted participation of sterically hindered hydroxyl groups of initiator. The synthesized star-polymers had narrow molecular weight distributions. Various reaction conditions to control the imperfection were studied.

  • PDF

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.