• Title/Summary/Keyword: temperature fronts

Search Result 54, Processing Time 0.025 seconds

Environmental Factors and the Distribution of Eggs and Larvae of the Anchovy (Engraulis japonica) in the Coastal Waters of Jeju Island (제주도 주변해역의 해양환경요인과 멸치 난자치어 분포)

  • Ko, Joon-Chul;Yoo, Joon-Taek;Rho, Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.394-410
    • /
    • 2007
  • Anchovy spawn from the end of May to mid-October, when the water temperature is $14.8-27.2\;^{\circ}C$ and the salinity is 26.0-33.6 psu. The main spawning season is between July to August, when the water temperature is $21.7-27.2\;^{\circ}C$ and the salinity is between 26.0-32.2 psu. The main spawning grounds of anchovy are coastal areas shallower than 50 m around the islands located in the Jeju Strait. Anchovy larvae are distributed near the fronts between Chuja-do, Jangsu-do, Yeoseo-do, and the open sea rather than in the spawning grounds. Anchovy eggs and larvae density increased in accordance with the high level of $Chlorophyll-{\alpha}$ during the summer season (July-August). In terms of the suspended sediment (SS) levels along the northern coast of the Jeju Strait, high densities of anchovy eggs (12.0-18.0 mg/L) were observed, mainly in the area affected by the coastal waters of the southern sea with high SS levels, while larvae (10.0-19.0 mg/L) tended to be distributed over a wide area with high SS levels, including the open sea. In terms of the dissolved oxygen (DO) content, eggs (5.4-6.8 mg/L) were observed in coastal areas with a high DO content, while larvae (4.2-6.4 mg/L) were distributed widely in areas with a relatively low DO content, from the southern coast to the open sea.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

Analysis of Misconceptions on Oceanic Front and Fishing Ground in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 조경 수역 및 어장에 관한 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Kang, Chang-Keun;Kim, Chang-Sin
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.504-519
    • /
    • 2020
  • Oceanic fronts, which are areas where sea water with different properties meet in the ocean, play an important role in controlling weather and climate change through air-sea interactions and marine dynamics such as heat and momentum exchange and processes by which properties of sea water are mixed. Such oceanic fronts have long been described in secondary school textbooks with the term 'Jokyung water zone (JWC hereafter) or oceanic front', meaning areas where the different currents met, and were related to fishing grounds in the East Sea. However, higher education materials and marine scientists have not used this term for the past few decades; therefore, the appropriateness of the term needs to be analyzed to remove any misconceptions presented. This study analyzed 11 secondary school textbooks (5 middle school textbooks and 6 high school textbooks) based on the revised 2015 curriculum. A survey of 30 secondary school science teachers was also conducted to analyze their awareness of the problems. An analysis of the textbook contents related to the JWC and fishing grounds found several errors and misconceptions that did not correspond with scientific facts. Although the textbooks mainly uses the concept of the JWC to represent the meeting of cold and warm currents, it would be reasonable to replace it with the more comprehensive term 'oceanic front', which would indicate an area where different properties of sea water-such as its temperature, salinity, density, and velocity-interact. In the textbooks, seasonal changes in the fishing grounds are linked to seasonal changes in the North Korean Cold Current (NKCC), which moves southwards in winter and northwards in summer; this is the complete opposite of previous scientific knowledge, which describes it strengthening in summer. Fishing grounds are not limited to narrow coastal zones; they are widespread throughout the East Sea. The results of the survey of teachers demonstrated that this misconception has persisted for decades. This study emphasized the importance of using scientific knowledge to correct misconceptions related to the JWC, fishing grounds, and the NKCC and addressed the importance of transferring procedures to the curriculum. It is expected that the conclusions of this study will have an important role on textbook revision and teacher education in the future.

Fishing Conditions of Common Squid (Todarodes pacificus Steenstrup) in Korean Waters I. Spatio-Temporal Distribution of Common Squid Related to the Changes in Oceanographic Conditions (한국 연근해 오징어의 어황 특성 I. 해양환경의 변동에 따른 오징어의 분포)

  • CHOI Kwang-Ho;HWANG Sun-Do;KIM Ju-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.513-522
    • /
    • 1997
  • Annual variations In main fishing grounds of common squid with different angling and their fishing conditions in Korean waters were studied by analyzing catch and water temperature data. The main fishing grounds of squid angling fishery started to moved to the north in April and to the south in September in the last Sea of Korea. The catch of squid was related to the direction of thermal fronts. The catch was high when the thermal front was formed in the east-west direction, while there was low catch when the thermal front was formed in the south-north direction which runs parallel to the roast.

  • PDF

Hydrography and Sub-tidal Current in the Cheju Strait in Spring, 1983 (1983년 춘계 제주해협의 해황과 해류)

  • Chang, Kyung-Il;Kim, Kuh;Lee, Suk-Woo;Shim, Tae-Bo
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.203-215
    • /
    • 1995
  • Two hydrographic surveys along with direct current measurements using drogues and moored current meters were conducted in Cheju Strait during April and May, 1983. The data clearly demonstrate that a branch of the Kuroshio characterized by high temperature and high salinity enters the Cheju Strait after turning around the western coast of Cheju-Do. The width of the current turning west of Cheju-Do is about 60 km and reduces to 20∼30 km in the strait, resulting in a high speed(>10 cm/s) at the western entrance and in the middle of the strait, compared with a low speed (>5 cm/s) west of Cheju-Do. The Tsushima Current water also originating from the Kuroshio shows its influence in the eastern part of the Cheju Strait. Thermohaline fronts formed between the warm current waters and the coastal waters suggest the southward extension of the Yellow Sea Coastal Water west of the Cheju Strait. A warming of the warm current waters occurs in May, while a cooling takes place in other areas. The major freshening and cooling of water take place in the middle of the Cheju Strait in May due to the intrusion of cold and low salinity water from the west of the Cheju Strait.

  • PDF

Long-range Transport Mechanisms of Asian Dust associated with the Synoptic Weather System

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.197-206
    • /
    • 2001
  • The long-range transport mechanisms of Asian dust were analyzed based on the synoptic weather system and numerical simulation by using NCEP/NCAR reanalysis and TOMS data during the periods of 1996-2001. We classified the whole weather types of eastern Asia during spring and created the representative weather types during the yellow sand events using cluster analysis and weather charts for the last 6 years(1996~2001). These long-range transport mechanisms were related to various pressure patterns including high and low, trough and ridge, and upper-level fronts. Case studies of the yellow sand events have performed by the simulation of MM5 with meteorological elements such as the horizontal wind of u and v component, potential temperature, potential vorticity, and vertical circulation during the episodic days(2~8 March 2001). In addition, the origin of the long-range transport was examined with the estimation of backward trajectory using HYSPLIT4 Model. In this paper, we concluded that three weather types at 1000 hPa, 850 hPa, 500 hPa, and 300 hPa levels were classified respectively. The dominant features were the extending continental outflow from China to Korea at 1000 hPa and 850 hPa levels, the deep trough passage and cold advection at 500 hPa and 300 hPa levels during the yellow sand events. And also, we confirmed the existence of pola $r_tropical jets in the upper-level, the behavior of potential vorticity over Korea, the estimation of potential vorticity through vertical cross section, and the transport of yellow sand through backward trajectories.es.

  • PDF

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

A Study of the Hydrographic Conditions and Tidal Front on the Northern Coastal Area of Cheju Island (제주도 북부연안역의 해황과 조석전선 특성)

  • Kim Sang-Hyun;RHO Hong-Kil;CHOI Chan-Moon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.437-446
    • /
    • 1998
  • The general pattern of the hydrographic conditions and tidal front of the northern coastal area of Cheju Island is investigated using the CTD observation data and a stratification parameter V ($J/m^3$) in $1991\~1993$. 1. The sea water of the northern coastal area of Cheju Island has a lower temperature and higher salinity than that in the central area of the Strait, and local temperature and salinity fronts appears frequently around this area. It seems that they are caused by the upwelling and the tidal front as well as a local topography. 2. A saddle-like distribution of temperature and salinity is formed in the Cheju Strait almost every month with relation to mixing of the different water masses. 3. In the northern coastal area of Cheju Island the stratification parameter V ($J/m^3$) was ranged from 8.4 to 209.8 $J/m^3$ in June, 201.9 to 634.9 $J/m^3$ in August, 0.18 to 680 $J/m^3$ in September, and $2.7\~462\;J/m^3$ in October, respectively. The tidal front was often formed around the place where the horizontal variation of the depth is very large and the potential energy with 10$J/m^3$ appears roughly along 50 m isobath.

  • PDF

Quantitative Analysis of the Thermal Front in the Mid -eastern Coastal Area of the Yellow Sea (황해 중부 연안 수온전선역의 정량적 해석)

  • Choi, Hyun-Yong;Lee, Sang-Ho;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The hydrographic data collected at three different times July, 1994, May, 1995 and June, 1996 around Taean peninsula in the mid-Yellow Sea off Korea, well known for the well-defined surface thermal fronts in summer, were analyzed. In the vertically well-mixed area where water depths varied from 15 m depth to 60 m depth, the temperature difference in the water column was less than $1^{\circ}C$. The temperature observed in the vertically well-mixed area was reversely related with the water depths and the coldest surface water was always observed over the deep channel with the depth of more than 50m, which developed southwestward off the promontory of Taean peninsula, irrespective of the observation period. The strengths of surface thermal front observed in June were much stronger than those in July, even though the surface temperature of stratified area were nearly the same as in July. These observed features could be explained as follows: A major physical process for the formation of the surface thermal front is the vertical mixing of water column but the detailed thermal structure in the study area depend on the physical parameters such as the water depth in the vertically well-mixed side and the vertical thermal structure in the stratified side.

  • PDF

The Characteristics of Yellow Sea Bottom Cold Water in September, 2006 (2006년 9월 황해저층냉수괴의 분포 특성)

  • Choi, Young-Chan
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.3
    • /
    • pp.425-432
    • /
    • 2011
  • In order to understand the characteristics of the distribution and the nutrients of the Yellow Sea Bottom Cold Water during summer to fall, temperature, salinity and nutrients have been investigated in the fifteen stations in the Yellow Sea. In september, the Changjiang diluted water with more than $20^{\circ}C$ distributed in the surface and the Yellow Sea Bottom Cold Water distributed in the layer below 30m depth with less than $10^{\circ}C$. Specially, water mass with less than $5^{\circ}C$ in the layer below 50m depth expanded southward down to the north latitude of $35^{\circ}$ with expanding more to the coasts of China than to the coasts of Korea. The salinity of the cold water mass with $8^{\circ}C$ in the deep layer of more than 50m depth was relatively high as 33.5 psu and expanded northward forming fronts of temperature and salinity. The concentration of total inorganic nitrogen was two times higher in the cold water mass than in the surface water, which means that resolution and consumption were low due to cold temperature in the bottom layer. In conclusion, the cold water expanded southward down to the north latitude of $35^{\circ}$ by September and had high concentration of nutrients.