• 제목/요약/키워드: temperature distribution model

검색결과 1,487건 처리시간 0.021초

아트리움의 수직온도 분포해석 프로그램의 개발에 관한 연구 (A study on the Development of Vertical Air Temperature Distribution Model in Atrium)

  • 김용인;조균형;김광우
    • 태양에너지
    • /
    • 제17권3호
    • /
    • pp.3-11
    • /
    • 1997
  • Recently the construction of atrium buildings has increased but along with it many problems in thermal environment have arised. since the exterior wall of glass, indoor temperature is greatly influenced by weather conditions and since the space volume is very large, the vertical air temperature is not uniform. So, in this study, a Vertical Temperature Distribution Model was developed to predict the vertical air temperature of an atrium and evaluate the effects of the design parameters on the air temperature distribution of an atrium. To consider the characteristics of the vertical air temperature distribution in an atrium, the Satosh Togari's Macroscopic Model was used basically for the calculation of the vertical air temperature distribution in large space and the solar radiation analysis model and natural ventilation analysis model in atrium. And to calculate the unsteady-state inside wall surface temperature(boundary condition), the finite difference method was used. For the verification of the developed temperature distribution program, numerical evaluation of air flow by the ${\kappa}-{\varepsilon}$ turbulence model and in-situ test was conducted in parallel. The results of this study, the developed temperature distribution program was seen to predict the thermal condition of the atrium very accurately.

  • PDF

주상용 몰드변압기의 온도분포와 열응력 해석 (The Temperature Distribution and Thermal Stress Analysis of Pole Mold transformer)

  • 조한구;이운용;한세원;김석수
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.297-301
    • /
    • 2001
  • In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The one body molding model (Model 1) and air duct model (Model 2) are designed and their temperature distribution are analysed. The temperature rise value is about 105.5 deg in the model 1 and 65.28 de in the model 2. The temperature change of secondary winding is more than primary winding according to load ratio. The concentration part of Von Mises Stress occurs at interface between glass fiber and epoxy.

  • PDF

가스터빈 연소기내의 고온공기 분무연소 해석 (Spray combustion with high temperature air in a Gas Turbine Combustor)

  • 조상필;김호영;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구 (Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler)

  • 박호영;서상일
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구 (Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads)

  • 김도형;김범주;이정현;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

Boundary Elements Heat Transfer Model of Temperature Distribution in Grain Storage Bins

  • T.Abe;C.E.Ofoche;Y.Hikida;Han, D.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.922-931
    • /
    • 1993
  • Boundary element method was used to solve heat conduction problem for predicting temperature distribution in grain storage bin. Temperature of grain in storage is one of the three main abiotic factors, besides the intergranular gas composition and the grain moisture content, that determine the keeping quality and control measures used to protect grain from insects and damaging microflora. Collecting the temperature data at various points in the storage bins at different time of the day over a period of time is one way of finding the temperature distribution, this method requires a lot of time, cost and labour and less efficient. However data so collected serve useful purpose of being used to validate predicted temperature distribution using mathematical models. Mathematical models based on physical principles can potentially predict with accuracy the temperature distribution in a grain storage bin. Using the boundary element model the effect of bin wall material, ambient emperature, bin size etc. on temperature distribution can be studied. A knowledge of temperature distribution in stored grain not only helps in identifying active deterioration , but also gives an indication of potential for detection.

  • PDF

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

복합격자 생성기법을 이용한 전력용 변압기의 2차원 온도분포 해석 (Analysis of Temperture Distribution in 2-D Power Transformer Using Hybrid Mesh Model)

  • 민경조;김중경;한성진;주수원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.993-995
    • /
    • 2005
  • Recently, the efficiency of power transformer is improved as well as the size is becoming smaller. So, it is very important that temperature characteristics of the transformer should be estimated and predicted precisely. This paper deals with the temperature distribution of power transformer by simplified 2-D hybrid mesh model. The temperature distribution of model transformer was obtained by CFD algorithm considering natural convection. Heat sources are calculated first by magnetic field analysis based on F.E.M. and are usedas the input data for thermal field problem based on computational fluid dynamics(CFD) algorithm. The calculated temperature distribution of the simplified 2-D power transformer model shows good results in accuracy as well as in computing time.

  • PDF

매크로 모델에 의한 실내온열환경 검토 (An Analysis of Indoor Thermal Environment by Macro Model)

  • 정재훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.584-589
    • /
    • 2008
  • It is known that slab thermal storage which uses concrete slab as thermal material is effective in the load leveling and using the nighttime electric power. The temperature distribution is not constant in plenum in thermal storage time by beams, ducts such as several factor. It is considered that this fact will effect on efficiency of thermal storage and indoor thermal environment. The purpose of this paper is to examine the thermal environment inside plenum. A macro model was made for the analysis of indoor thermal environment as the first step. The flow rate distribution and temperature distribution of object room model was examined by use of basic equations such as airflow by the pressure difference between unit cells, heat flow by air and heat transfer.

  • PDF

정전척 온도분포 개선을 위한 냉각수 관로 형상 (Coolant Path Geometry for Improved Electrostatic Chuck Temperature Variation)

  • 이기석
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.21-23
    • /
    • 2011
  • Uniformity of plasma etching processes critically depends on the wafer temperature and its distribution. The wafer temperature is affected by plasma, chucking force, He back side pressure and the surface temperature of ESC(electrostatic chuck). In this work, 3D mathematical modeling is used to investigate the influence of the geometry of coolant path and the temperature distribution of the ESC surface. The model that has the coolant path with less change of the cross-sectional area and the curvature shows low standard deviation of the ESC surface temperature distribution than the model with the coolant path of the larger surface area and more geometric change.