• Title/Summary/Keyword: temperature dependent photoluminescence

Search Result 63, Processing Time 0.029 seconds

Optical properties of a-plane InGaN/GaN multi-quantum wells with green emission

  • Song, Hoo-Young;Kim, Eun-Kyu;Lee, Sung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.172-172
    • /
    • 2010
  • In the area of optoelectronic devices based on GaN and related ternary compounds, the two-dimensional system like as quantum wells (QWs) has been investigated as an effective structure for improving the light-emitting efficiency. Generally, the quantum well active regions in III-nitride light-emitting diodes grown on conventional c-plane sapphire substrates have critical problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. However, the QWs grown on nonpolar templates are free from the QCSE since the polar-axis lies within the growth plane of the template. Also the unique characteristic of linear polarized light emission from nonpolar QW structures is attracting attentions because it is proper to the application of back-light units of liquid crystal display. In this study, we characterized optical properties of the a-plane InGaN/GaN QW structures by temperature-dependent photoluminescence (TDPL) measurements. From the photoluminescence (PL) spectrum measured at 300 K, green emission centered at 520 nm was observed for the QW region. Since indium incorporation on nonpolar QWs is lower than that on c-plane, this high indium-doping on a-plane InGaN QWs is not common. Therefore, the effect of high indium composition on optical properties in a-plane InGaN QWs will be extensively studied.

  • PDF

Temperature-dependent photoluminescence properties of amorphous and crystalline V2O5 films (비정질과 결정질 V2O5 박막의 온도에 따른 발광특성)

  • Kang, Manil;Chu, Minwoo;Kim, Sok Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.202-206
    • /
    • 2014
  • In order to investigate the photoluminescence (PL) properties of $V_2O_5$ films, amorphous and crystalline films were prepared by using RF sputtering system, and the PL spectra of the films were measured at the temperatures ranging from 300 K to 10 K. In the amorphous $V_2O_5$ film grown at room temperature, a PL peak centered at ~505 nm was only observed, and in the crystalline $V_2O_5$ film, two peaks centered at ~505 nm and ~695 nm, which is known to correspond to oxygen defects, were revealed. The position of PL peak centered at 505 nm for both the amorphous and crystalline $V_2O_5$ films showed a strong dependence on temperature, and the positions were 2.45 eV at 300 K and 2.35 eV at 10 K, respectively. The PL at 505 nm was due to the band energy transition in $V_2O_5$, and also, the reduction of the peak position energy with decreasing temperature was caused by a decrement of the lattice dilatation effect with reducing electron-phonon interaction.

Time-resolved photoluminescence spectroscopy of InGaN multiple quantum wells

  • Lee, Joo-In;Shin, Eun-joo;Lee, J.Y. m;Kim, S.T.;G.S. Lim;Lee, H.G.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • We have fabricated by metal organic chemical vapor deposition (MOCVD) In$\_$0.13/Ga$\_$0.87/N/GaN multiple quantum well (MQW) with thickness as thin as 10 A and barriers also of th same width on (0001) sapphire substrate. We have investigated this thin MQW by steady-state and time-resolved photoluminescence(PL) in picosecond time scale in a wide temperature range from 10 to 290 K. In the PL at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum well emission of InGaN. The full width at half maximum (FWHM) of this peak was 129 meV at 10 K and its broadening at low temperatures was considered to be due to compositional fluctuations and interfacial disorder in the alloy. The narrow width of the quantum well was mainly responsible for the broadening of the emission linewidth. We also observed an intense and sharp peak at 3.471 eV of GaN barrier. From the temperature dependent PL measurements, the activation energy of the InGaN quantum well emision peak was estimated to be 69 meV. The lifetime of the quantum well emission was found to be 720 ps at 10 K, which was explained in terms of the exciton localization arising from potential fluctuations.

  • PDF

Optical Properties of ZnO Soccer Ball Structures by Using Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.248-248
    • /
    • 2011
  • ZnO was grown on a Au-catalyzed Si(100) substrate by using a simple vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. The ZnO grown at 800$^{\circ}C$ had a soccer ball structure with diameters of <500 nm. The ZnO soccer ball structure was, for the first time, observed in this work. The optical properties of the ZnO soccer balls were investigated by photoluminescence (PL). In the room-temperature (RT) PL of the ZnO soccer balls, a strong near-band-edge emission (NBE) and a weak deep-level emission were observed at 3.25 and 2.47 eV (green emission), respectively. The weak deep-level emission (DLE) at around 2.47 eV (green emission) is caused by impurities and structural defects. The FWHM of the NBE peak from the ZnO soccer balls was 110 meV. In addition, the PL intensity ratio of the NBE to DLE was about 4. The temperature-dependent PL was also carried out to investigate the mechanism governing the quenching behavior of the PL spectra.

  • PDF

Temperature Dependent Optical Performance of the NaSr(PO3)3:Eu2+ Blue Phosphors (NaSr(PO3)3:Eu2+ 청색 형광체의 온도 의존적 형광 특성)

  • Yoon, Chang yong;Lee, Sang ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.391-399
    • /
    • 2021
  • Eu2+ doped polyphosphate NaSr(PO3)3 blue-emitting phosphors were synthesized by the conventional solid state method in a reductive atmosphere. The phase formation of NaSr(PO3)3 phosphors were characterized by using the X-ray powder diffraction (XRD) measurement. The photoluminescence emission and excitation spectra of the NaSr(PO3)3:Eu2+ phosphor, and decay curves were measured. Under the near-UV excitation, the phosphor exhibits a band emission around 420 nm assigned to the 4f65d→f7(8S7/2) transition of Eu2+. The temperature dependent emission spectra and decay curves were measured to elevate the thermal properties of the Eu2+ doped phosphors. The as-prepared NaSr(PO3)3:Eu2+ phosphors show a strong temperature dependent performance, which can serve as a promising temperature sensor.

Growth of ZnO Film by an Ultrasonic Pyrolysis (초음파 열분해법를 이용한 ZnO 성장)

  • Kim, Gil-Young;Jung, Yeon-Sik;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • ZnO was deposited on sapphire single crystal substrate by an ultrasonic pyrolysis of Zinc Acetate Dehydrate (ZAH) with carrying Ar gas. Through Thermogravimetry-Differential Scanning Calorimetry(TG-DSC), zinc acetate dihydrate was identified to be dissolved into ZnO above $380^{\circ}C$. ZnO deposited at $380-700^{\circ}C$ showed polycrystalline structures with ZnO (101) and ZnO (002) diffraction peaks like bulk ZnO in XRD, and from which c-axis strain ${\Sigma}Z=0.2\%$ and compressive biaxial stress$\sigma=-0.907\;GPa$ was obtained for the ZnO deposited $400^{\circ}C$. Scanning electron microscope revealed that microstructures of the ZnO were dependent on the deposition temperature. ZnO grown below temperature $600^{\circ}C$ were aggregate consisting of zinc acetate and ZnO particles shaped with nanoblades. On the other hand the grain of the ZnO deposited at $700^{\circ}C$ showed a distorted hexagonal shape and was composed of many ultrafine ZnO powers of 10-25 nm in size. The formation of these ulrafine nm scale ZnO powers was explained by the model of random nucleation mechanism. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement.

Low temperature growth of GaN on sapphire using remote plasma enhanced-ultrahigh vacuum chemical vapor deposition

  • Park, J.S.;Kim, M.H.;Lee, S.N.;Kim, K.K.;Yi, M.S.;Noh, D.Y.;Kim, H.G.;Park, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.85-99
    • /
    • 1998
  • A ultrahigh vacuum chemical vapor deposition(UHVCVD)/metalorganic chemical vapor deposition(MOMBE) system equipped with a radio frequency(RF)-plasma cell was employed to grow GaN layer on the sapphire at a low temperature. The x-ray photoelectron spectroscopy analysis of nitrogen composition on the nitridated sapphite surface indicated that a nitridation process is mostly affected by the RF power at low temperature. Atomic force microscope images of nitridated surface the protrusion density on the nitridated sapphire is dependent on the nitridation temperature. The crystallinity of GaN grown at $450^{\circ}C$ was found to be much improved when the sapphire was nitridated at low temperature prior to the GaN layer growth. Moreover, a strong photoluminescence spectrum of GaN grown by UHVCVD/MOMBE with a rf-nitrogen plasma was observed for the first time at room temperature.

  • PDF

Dispersion and Shape Control on Nanoparticles of Gd2O3:Eu3+ Red Phosphor Prepared by Template Method (주형법으로 제조된 Gd2O3:Eu3+ 적색 형광체의 나노입자 분산 및 형상제어)

  • Park, Jeong Min;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.534-543
    • /
    • 2017
  • $Gd_2O_3:Eu^{3+}$ red phosphors were prepared by template method from crystalline cellulose impregnated by metal salt. The crystallite size and photoluminescence(PL) property of $Gd_2O_3:Eu^{3+}$ red phosphors were controlled by varying the calcination temperature and $Eu^{3+}$ mol ratio. The nano dispersion of $Gd_2O_3:Eu^{3+}$ was also conducted with a bead mill wet process. Dependent on the time of bead milling, $Gd_2O_3:Eu^{3+}$ nanosol of around 100 nm (median particle size : $D_{50}$) was produced. As the bead milling process proceeded, the luminescent efficiency decreased due to the low crystallinity of the $Gd_2O_3:Eu^{3+}$ nanoparticles. In spite of the low PL property of $Gd_2O_3:Eu^{3+}$ nanosol, it was observed that the photoluminescent property was recovered after re-calcination. In addition, in the dispersed nanosol treated at $85^{\circ}C$, a self assembly phenomenon between particles appeared, and the particles changed from spherical to rod-shaped. These results indicate that particle growth occurs due to mutual assembly of $Gd(OH)_3$ particles, which is the hydration of $Gd_2O_3$ particles, in aqueous solvent at $85^{\circ}C$.

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF