• Title/Summary/Keyword: temperature coefficient of resistance (TCR)

Search Result 114, Processing Time 0.025 seconds

Spin Spray-Deposited Spinel Thin Films for Microbolometer Applications (마이크로볼로미터 응용을 위한 스핀 스프레이로 증착된 스피넬 박막)

  • Jeon, Chang Jun;Lee, Kui Woong;Le, Duc Thang;Jeong, Young Hun;Yun, Ji Sun;Paik, Jong Hoo;Cho, Jeong Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.809-814
    • /
    • 2014
  • Spinel thin films were prepared by the spin spray technique to develop new thermal imaging materials annealed at low temperature for uncooled microbolometer applications. The spinel thin films were deposited from $[(Ni_{0.30}Co_{0.33}Mn_{0.37})_{1-x}Cu_x]_3O_4$ ($0.1{\leq}x{\leq}0.2$) solutions and then annealed at $400^{\circ}C$ for 1 h in argon. Effects of Cu content (x) and deposition time on the electrical properties of the annealed films were investigated. With increasing deposition time, the resistivity of the annealed films increased. For the annealed films deposited for 1 min, the resistivity of x=0.15 films was lower than that of x=0.1 films due to the different grain sizes. The high temperature coefficient of resistance (TCR) of the annealed films could be obtained at temperature below $50^{\circ}C$. Typically, the resistivity of $127{\Omega}{\cdot}cm$ and TCR of -5.69%/K at $30^{\circ}C$ were obtained for x=0.1 films with deposition time of 1 min annealed at $400^{\circ}C$ for 1 h in argon.

Ceramic Pressure Sensors Based on CrN Thin-films (CrN박막 세라믹 압력센서)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

The Fabrication of a Ceramic Pressure Sensor Using Tantalum Nitride Thin-Films (질화탄탈박막을 이용한 세라믹 압력센서의 제작)

  • 정수용;최성규;이종춘;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.181-184
    • /
    • 2002
  • This paper describes fabrication and characteristics of ceramic pressure sensor for working at high temperature. The proposed pressure sensor consists of a Ta-N thin-film, patterned on a Wheatstone bridge configuration, sputter deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability The sensitivity is 1.097∼1.21 mV/V$.$kgf/$\textrm{cm}^2$ in the temperature range of 25∼200$^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Fabrication of Metal Thin-Film Pressure Sensor and Its Characteristics (금속박막형 압력세서의 제작과 그 특성)

  • 정귀상;최성규;남효덕;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.405-409
    • /
    • 2001
  • This paper describes fabrication and characteristics of metal thin-film pressure sensor for working at high temperature. The proposed pressure consists of a chrom thin-film, patterned on a Wheat stone bridge configuration, sputter-deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097∼1.21mV/V$.$kgf/$\textrm{cm}^2$ in the temperature range of 25∼200$^{\circ}C$ and the maximum non-linearity is 0.43%FS.

  • PDF

Electrical Properties of Manganite Thin Films Prepared by Spin Spray Method (스핀 스프레이 법으로 제조한 망가나이트 박막의 전기적 특성)

  • Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik;Paik, Jong Hoo;Hong, Youn Woo;Cho, Jeong Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • Effects of pH value and deposition time on the electrical properties of (NMC) Ni-Mn-Cu-O and (NMCC) Ni-Mn-Cu-Co-O thin films were investigated. The NMC and NMCC films were prepared by spin spray method. The crystal structure and thickness of the annealed films were changed by the pH value and deposition time, respectively. A single phase of cubic spinel structure was confirmed for the annealed films deposited from solutions with pH 7.6. The resistivity of the annealed films was affected by the crystal structure and microstructure. The TCR (temperature coefficient of resistance) was dependent on the $Mn^{3+}/Mn^{4+}$. Typically, the resistivity of $70.5{\Omega}{\cdot}cm$ and TCR of -3.56%/K at room temperature were obtained for NMCC films deposited from solutions with pH 7.6 for 5 min, and annealed at $450^{\circ}C$ for 3 h.

Micro flow sensor using polycrystalline silicon carbide (다결정 실리콘 카바이드를 이용한 마이크로 유량센서)

  • Lee, Ji-Gong;Lei, Man I;Lee, Sung-Pil;Rajgopal, Srihari;Mehregany, Mehran
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • A thermal flow sensor has been fabricated and characterized, consisting of a center resistive heater surrounded by two upstream and one downstream temperature sensing resistors. The heater and temperature sensing resistors are fabricated from nitrogen-doped(n-type) polycrystalline silicon carbide(poly-SiC) deposited by LPCVD(low pressure chemical vapor deposition) on LPCVD silicon nitride films on a Si substrate. Cavities were etched into the Si substrate from the front side to create suspended silicon nitride membranes carrying the poly-SiC elements. One upstream sensor is located $50{\mu}m$ from the heater and has a sensitivity of $0.73{\Omega}$/sccm with ${\sim}15\;ms$ rise time in a dynamic range of 1000 sccm. N-type poly-SiC has a linear negative temperature coefficient and a TCR(temperature coefficient of resistance) of $-1.24{\times}10^{-3}/^{\circ}C$ from room temperature to $100^{\circ}C$.

Development of Thin-Film Type Strain Gauges for High-Temperature Applications (고온용 박막형 스트레인 게이지 개발)

  • Choi, Sung-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1596-1598
    • /
    • 2002
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-($4{\sim}16%$)$N_2$). These films were annealed for 1 hour in $2{\times}10^{-6}$ Torr vacuum furnace range $500{\sim}1000^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition($900^{\circ}C$, 1 hr.) in 8% $N_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, ${\rho}$=768.93 ${\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR = -84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF = 4.12.

  • PDF

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

Thermal and Structural Design, and Absorption Layer Fabrication of Microbolometer (Microbolometer의 열적.구조적 설계 및 흡수층 공정)

  • Han, Myung-Soo;Park, Young-Sik;An, Su-Chang;Kang, Tai-Young;Lim, Sung-Soo;Lee, Hong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.391-392
    • /
    • 2008
  • A surface micromachined uncooled microbolometer based on the amorphous silicon was designed and fabricated. We designed the microbolometer with a pixel size of $35\times35$, $44\times44{\mu}m^2$ and a fill factor of about 70 % by considering such important factors as the thermal conductance, thermal time constant, the temperature coefficient of resistance, and device resistance. Finally, we successfully fabricated the microbolometer by using surface MEMS technology, and the properties of bolometer have been measured as such that TCR and absorptance can be achieved above -2.5%/K and about 90% with titanium layer, respectively.

  • PDF

Formation of Ni Oxide Thin Film and Analysis of Its Characteristics for Thermal Sensors (열형센서용 니켈 산화막의 형성 및 특성분석)

  • Lee, Eung-Ahn;Seo, Jeong-Hwan;Noh, Sang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Ni oxide thin films were formed through annealing treatment in the atmosphere after Ni thin films deposited by a r.f. magnetron sputtering method and then electric and material properties were analyzed for application to thermal sensors. Resistivity of Ni thin films decreased after annealing treatment at 30$0^{\circ}C$ and 40$0^{\circ}C$ for five hours due to crystallization of Ni thin films but the value increased over 45$0^{\circ}C$ because of Ni thin film's oxidation. Resistivity values of Ni thin films were in the range of 10.5 $\mu$Ωcm/$^{\circ}C$ to 2.84${\times}$10$^4$$\mu$Ωcm/$^{\circ}C$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation such as 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of 0 $^{\circ}C$∼150 $^{\circ}C$. The results demonstrate that Ni oxide thin films of annealing treatment at 40$0^{\circ}C$ for 5hours could be more advantageous than pure Ni thin films and Pt thin films from a point of output properties and TCR, applied to thermal sensors.