• 제목/요약/키워드: temperature characteristic

검색결과 2,914건 처리시간 0.026초

투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구 (A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature)

  • 이호진;안동규
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

측정부 온도 부하에 따른 광용적맥파 파형 요동 특성 분석 (Analysis for the Fluctuation of the Photoplethysmographic Waveform derived by Temperature Stress of Measuring Position)

  • 이충근;신항식
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.304-309
    • /
    • 2015
  • Applicable range of Photoplethysmography (PPG) becomes wider as a non-invasive physiological measurement technique. However, PPG waveform is easy to be distorted by ambient light or vascular variation from temperature changes. Especially, irregular variation of PPG waveform caused by ambient temperature not only severely distorts the PPG, but also leads miss interpretation in clinical applications. Therefore, the investigation of between temperature and PPG waveform is quite important in using PPG. The purpose of this research is to quantify the PPG waveform characteristic and to investigate the waveform variation following the temperature change on measuring site. To quantify the fluctuation of PPG waveform, we use two techniques; detrended fluctuation analysis (DFA) and AC/DC analysis of PPG. We record PPG under temperature stress, which applied by medical use heat pack ($40^{\circ}C$) and ice pack ($0^{\circ}C$). Ten participants were applied to the experiment, and the result was evaluated to approve the temperature effect with statistical method, Wilcoxon signed rank test. The result shows that the AC component (p<0.05) and perfusion index DFS scale exponent (p<0.01) of PPG have the significance to temperature stress except for a DC component of PPG.

$Na_4P_2O_7{\cdot}10H_2O$의 축열방열시 열전달 특성에 관한 실험적 연구 (An experimental study of heat transfer with $Na_4P_2O_7{\cdot}10H_2O$ as P.C.M.)

  • 이채문;임장순
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.70-77
    • /
    • 1989
  • Sodium pyrophosphate that melting point is $79-80^{\circ}C$ have been Studied on heat storage and heat discharge. In heat storage process, sodium pyrophosphate was kept up initial temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ which melt by heated water at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$. In heat discharge process, initial temperature of sodium pyrophosphate was maintained at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$ which varied cooling temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$. The experiment has been reached conclusions as follows. 1) Heat transfer properties of phase change material is controlled by conduction during heating and cooling process. 2) The temperature increased rapidly at initial stage and transient region increase slowly because of characteristic of latent heat. 3) The lower cooling water temperature is the less the time that get to thermal equivalent state take during discharge process. 4) The higher cooling water temperature is the less temperature difference between top and bottom in P.C.M during discharge process.

  • PDF

주위 온도의 급격한 변화에 따른 압력 및 차압 전송기의 특성 변화 (The Characteristic Change of Pressure and Differential Transmitter due to a Rapid Change of Ambient Temperature)

  • 정종태;하영철;이철구;허재영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.321-326
    • /
    • 2004
  • The pressure and differential pressure(DP) transmitters are used for gas flow rate calculation on the orifice gas metering system. On site, the pressure and DP transmitters are installed in a shelter to diminish the affects of environmental change such as an ambient temperature. But there has been an argument about the effectiveness of the shelter and this brought up the necessity to verify the affects of ambient temperature. These experiments were performed to verify the ambient temperature effects as observing the output of transmitters when the ambient temperature were changed from $-30^{\circ}C$ to $50^{\circ}C$. The results showed that the most of transmitters were operated in the spec range of performance criteria presented by manufacturer but the rapid change of ambient temperature could cause the larger measurement error for the DP transmitter of low span than others. Therefore the pressure and DP transmitters need to be operated and controlled within the proper range of ambient temperature.

  • PDF

저온축열용 포접화합물의 열물성에 관한 실험적 연구 (An Experimental Study on Thermal Properties of Clathrate for Cold Storage Applications)

  • 한영옥;정낙규;김진흥
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.725-734
    • /
    • 2000
  • The objective of this paper is to investigate the thermal properties of TMA clathrate applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are peformed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of concentrations and temperature of heat source in TMA clathrate. The results are summarized as follows; 1) temperature of phase change is dropped as the temperature of heat source is lower, 2) the effect of subcooling suppression with about $9.3^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 29wt% and 30wt% . Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$ Thus, it is concluded that TMA clathrate has proper properties as the cold storage medium for building air-conditioning.

  • PDF

The relationship of mean temperature and 9 collected butterfly species' wingspan as the response of global warming

  • Na, Sumi;Lee, Eunyoung;Kim, Hyunjung;Choi, Seiwoong;Yi, Hoonbok
    • Journal of Ecology and Environment
    • /
    • 제45권4호
    • /
    • pp.182-189
    • /
    • 2021
  • Background: Organism body size is a basic characteristic in ecology; it is related to temperature according to temperature-size rule. Butterflies are affected in various aspects by climate change because they are sensitive to temperature. Therefore, this study was conducted to understand the effect of an increase in temperature due to global warming on the wing of butterflies. Results: A total of 671 butterflies belonging to 9 species were collected from 1990 to 2016 in Seoul (336 specimens) and Mokpo (335 specimens). Consequently, as the mean temperature increased, the wing length of the species increased. However, there are exceptions that the Parnassius stubbendorfii, Pieridae canidia, and Pieris rapae wing length of Seoul increased, but the butterfly wing length of Mokpo decreased. Conclusions: The positive correlations between the butterfly wing length and mean temperature showed that the change of mean temperature for about 26 years affects the wing length of butterfly species. The exception is deemed to have been influenced by the limited research environment, and further studies are needed. We would expect that it can be provided as basic data for studying effect of climate change.

Fin and Temperature Effect of Frost in Ambient Air Vaporizer

  • Lee, Seong-Woo;Choi, Sung-Woong
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.211-216
    • /
    • 2022
  • Since liquefied natural gas (LNG) is imported in a liquid state of about -162℃ to increase transportation efficiency in Korea, it must be vaporized in a gaseous state to supply it to consumers. Among them, ambient air vaporizer (AAV) has caught attention due to eco-friendly and low costs characteristics. However, there is a disadvantage that the performance of the heat exchanger is deteriorated due to frost due to mist and icing when used for a long time. In this paper, frost generation model in AAV vaporizer was investigated with numerically to examine utilizing the vaporizer performance with the frost generation behavior. The frost generation behavior of AAV vaporizers was examined with humidity, fin characteristic, and temperature effects. As for the LNG discharge temperature, the 12 fin vaporizer showed the highest discharge temperature when the atmospheric temperature was 25℃, and the 8 fin vaporizer had the lowest LNG discharge temperature when the atmospheric temperature was 0℃. In the case of frost formation, in the case of the 12 fin vaporizer, it was formed the most at the atmospheric temperature of 25℃, and the least was formed in the vaporizer at the 0℃ condition of the atmospheric temperature of 8 fins.

AE센서의 압전소자에 이용할 PZT-PMNS 특성 (Charicteristics of PZT-PMNS using for piezoelectric element of AE sensor)

  • 권오덕;유지성;윤용진;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1612-1614
    • /
    • 2004
  • The piezoelectric ceramics for AE-sensor are desired large electromechanical coupling factor, high mechanical quality factor and good characteristic resonance frequency. In this study, the empirical formula of specimens is used 0.9Pb$(Zr_xTi_{1-x})O_3-0.1Pb(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$ (PZT-PMNS). The piezoelectric and dielectric characteristic are investigated by sintering temperature and value of x as functions of $Ti^{2+},\;Zi^{2+}$ moi rate. MPB(morphotropic phase boundary) is defned in the x=0.522. Because it is appeared to the best piezoelectric and dielectric characteristic in the x=0.522, it can be application of AE sensor. PZT-PMNS ceramics without pre-amplifier and filter are tested for AE-signal of PD and arc detecting. The detection characteristic is evaluated wave form, frequency distribution.

  • PDF

PZT/Ferrite 합성 세라믹의 특성에 관한 기초연구 (Electrical and Magnetical Characteristics for PZT/Ferrite Ceramics)

  • 김장용;이상현;이승봉;안형호;현충일;이명세;문병무
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권4호
    • /
    • pp.153-158
    • /
    • 2003
  • This thesis deal with ferroelectric and ferromagnetic materials. PZT/Ferrite ceramics were made by the making process using PZT powder and garnet ferrite powder. PZT and ferrite are mixed as much 90%-10%, 50%-50%, and so on. After making samples, we are polishing samples until thickness is 0.1~0.2mm. We measured all kinds of samples in room temperature and applied magnetic field from -4500 to 4500 Oersted and conducted test of magnetical and electrical measurement using VSM and lpC resolution electrometer calibrated with RT66A pulsed tester. From this measurement, we can calculate tunability of these samples using C value obtained from P-E loop. As a result, it was able to measure magnetic characteristic when two matter had each other component ratio, and it was compound. However, it confirmed the possibility that was able to have ferroelectric characteristic with you in PZT 90% and ferrite 10%. Therefore, If this thing comes for PZT 50% and ferrite 50% have ferroelectric characteristic as him in a compound sample ore, can use this in an oscillator, supersonic waves detector in addition to a piezoelectric element. It may contribute to multipurpose of an element and demands such as a miniaturization of equipment, efficiency, reduce of a price which can use a characteristic of two components.

대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구 (Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow)

  • 신석재;김종일;정영철;최두석
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.