• Title/Summary/Keyword: temperature characteristic

Search Result 2,914, Processing Time 0.035 seconds

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim S.I.;Cho J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

Force Control of Small Lens Molding System (소형렌즈 성형시스템의 힘제어에 관한 연구)

  • Kim, Gab-Soon;Kuk, Gum-Hwan;Shin, Hyi-Jun;Kim, Hyeon-Min;Jung, Dong-Yean
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1091-1096
    • /
    • 2007
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of a electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, and the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

  • PDF

Development of Molding System for Manufacturing a Small Lens and Its Force Control (소형렌즈 성형시스템 개발 및 힘제어에 관한 연구)

  • Kuk, Gum-Hwan;Jung, Dong-Yean;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.57-64
    • /
    • 2008
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass material, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of an electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

A Study of Creep Characteristics of ABS (Acrylonitrile Butadiene Styrene) for Different Stress Levels and Temperatures (응력과 온도에 따른 ABS의 크리프특성에 관한 연구)

  • Kang, Suk-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1137-1143
    • /
    • 2012
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-plastic polymers, Acrylonitrile Butadiene Styrene (ABS) which is used broadly for machine elements material, as it has excellent mechanical properties such as impact resistance, toughness and stiffness compared to other polymers, was studied for creep characteristic at different levels of stress and temperatures. From the experimental results, the creep limit of ABS at room temperature is 80 % of tensile strength which is higher than PE and lower than PC or PMMA. Also the creep limits decreased to linearly as the temperatures increased, up to $80^{\circ}C$ which is the softening temperature of Butadiene ($82^{\circ}C$). Also the secondary stage of creep among the three creep stages for different levels of stress and temperature was non-existent which occurred for many metals by strain hardening effect.

A Study on Emission Characteristics of Ar Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.611-615
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, Electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. Therefore, the electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an argon discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Adsorption and Thermal Regeneration of Toluene and Benzene on the Fixed Bed Packed with Activated Carbon and Activated Carbon Fiber

  • Kim, Jong-Hwa;Oh, Ok-Kyun;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Woo-Sik
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • The characteristics of adsorption and desorption of benzene and toluene were investigated at a fixed bed packed with the activated carbon and activated carbon fiber. Through breakthrough experiments under various feed concentration conditions, it was found that the slope of mass transfer zone and the tailing in the breakthrough curves were different from the feed conditions due to different heats of adsorption. In hot nitrogen desorption, the regeneration time and mass transfer zone of the toluene desorption curve were longer than those of the benzene desorption curve because of the difference in adsorption affinity. With an increase in the regeneration temperature, the height of roll-up and the sharpness of desorption curves increased but the regeneration times decreased. The adsorption capacities of the activated carbon and activated carbon fiber after three-time thermal regenerations decreased about 25% and 37% for benzene and 18% and 25% for toluene, respectively. To investigate the effect of the regeneration temperature on the energetic efficiency, the characteristic desorption temperatures of toluene and benzene were investigated by calculating purge gas consumption and temperature.

  • PDF

Characteristic Features Observed in the East-Asian Cold Anomalies in January 2011 (2011년 1월의 동아시아 한랭 아노말리 특성)

  • Choi, Wookap;Jung, Jiyeon;Jhun, Jong-Ghap
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • East Asia experienced extremely cold weather in January 2011, while the previous December and the following February had normal winter temperature. In this study National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data are used to investigate the characteristic features observed in the meteorological fields such as temperature, sea-level pressure, geopotential height, and wind during this winter period. In January the planetary-wave pattern is dominated by stationary-wave form in the mid-to-high latitude region, while transient waves are significant in the previous month. To understand the planetary-wave features quantitatively, harmonic analyses have been done for the 500-hPa geopotential height field. In the climatological-mean geopotential heights the wave numbers 1, 2, and 3 are dominant during the whole winter. In January 2011 the waves of number 1, 2, and 3 are dominant and stationary as in the climatological-mean field. In December 2010 and February 2011, however, the waves of number 4, 5, and 6 play a major role and show a transient pattern. In addition to the distinctive features in each month the planetary-wave patterns dependent on the latitude are also discussed.

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • Kim Seok-ll;Cho Jae-Wan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.30-37
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

Observation of Long and Short Wave Radiation During Summer Season in Daegu Area (대구지역의 하절기 장.단파복사 관측)

  • Oh, Ho-Yeop;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.134-139
    • /
    • 2012
  • This study observed downward long and short-wave radiant environment with selecting 4 areas which have different height in downtown and 1 suburban area to figure out the characteristic of radiant environment in each altitude. The purpose of this study is to collect the preliminary data for interpreting urban thermal environment in summer season by analyzing thermal characteristic of atmosphere in the upper of downtown. The results of this study are as follows. 1) The higher altitude has the lower temperature, and temperature difference was more huge in day time than night time. 2) The short wave radiation according to altitude was higher as altitude was high. 3) Generally, the higher altitude has the lower air temperature, and also the higher altitude has the lower downward long wave radiation by the atmospheric radiation. 4) The ratio short wave radiation of long wave radiation was lower as altitude was high. And the urbanization effect was higher as the ratio was low.

  • PDF