• Title/Summary/Keyword: temperature calibration

Search Result 516, Processing Time 0.026 seconds

An Experimental Investigation of Unsteady Mixed Convection in a Horizontal Channel with Cavity Using Thermo-Sensitive Liquid Crystals

  • Bae, Dae-Seok;Cai, Long-Ji;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.987-993
    • /
    • 2009
  • An experimental study is performed to investigate unsteady mixed convection in a horizontal channel with a heat source. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualization and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. It is found that the periodic flow of mixed convection in a cavity appears at very low Reynolds numbers (Re<0.4), and the period decreases with increasing Reynolds numbers and increases with increasing aspect ratio.

Quantitative Visualization of Mixed Convection in 3-D Rectangular Channels Using TLC Tracers (액정을 이용한 3차원 사각채널 내 혼합대류의 정량적 가시화)

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.51-57
    • /
    • 2016
  • Experiment is carried out to investigate the mixed convective flow in three-dimensional horizontal rectangular channels filled with high viscous fluid. The particle image velocimetry(PIV) with thermo-sensitive liquid crystal tracers is used for visualizing and analysis. Quantitative data of temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. In this study, the fluid used is silicon oil(Pr=909), the aspect ratio(channel width to heigh) is 4 and Reynolds number is $2{\times}10^{-2}$. From the present study, we can visualize the quantitative temperature and velocity of mixed convective flow in three-dimensional horizontal rectangular channels simultaneously.

COLOR EXCESSES AND PERIOD-COLOR RELATION OF CLASSICAL CEPHEIDS

  • Kim, Chul-Hee;Moon, B.K.;Yushchenko, A.V.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.153-159
    • /
    • 2010
  • Color excesses of classical Cepheids in the uvby color system are estimated for the calibration stars with distances from the literature that are measured independently. Intrinsic photometric indices for these stars are calculated and a calibrated empirical relation between (b - y)$_0$, period, [$c_1$], and [$m_1$] is derived through a linear fit. This relation is used to determine color excesses E(b-y) for 59 Cepheids. We also examine the period-color [log P : (b - y)$_0$] relation, and find no signs of nonlinearity. We estimate the effective temperature and surface gravity of several Cepheids using both Kurucz and MARCS/SSG grids for [Fe=H]=0.0. We confirm that both temperature and surface gravity are higher, by about 150K and 0.4 respectively, when the MARCS/SSG atmospheric grids are used.

A Study on the Quantitative Visualization of Rayleigh-Bernard Convection Using Thermochromic Liquid Crystal (감온액정을 이용한 Rayleigh-Bernard 대류의 정량적 가시화에 관한 연구)

  • 배대석;김진만;권오봉;이동형;이연원;김남식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.395-404
    • /
    • 2003
  • Quantitative data of the temperature and velocity were obtained simultaneously by using liquid crystal tracer. PIV(Particle Image Velocimety) based on a grey-level cross-correlation method was used for visualizing and analysis of the flow field. The temperature gradient was obtained by applying the color-image processing to a visualized image, and a neural-network a1gorithm was applied to the color-to-temperature calibration. This simultaneous measurement was applied to the Rayleigh-Bernard convection. This paper describes the method, and presents the quantitative visualization of Rayleigh-Bernard convection and the effect of aspect ratio and viscosity. Also the experimental results were compared with the numerical results.

Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner (다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구)

  • Cho, J.D.;Kang, J.H.;Lim, I.G.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

Climate Data Qualification for Water Quality Impact Assessment (수질영향평가의 신뢰수준 향상을 위한 기상자료의 검정)

  • Lee, Khil-Ha;Cho, Hongyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.601-613
    • /
    • 2011
  • This study is focused on a climate data integrity to improve water quality assessment due to the social development projects. The study is in an attempt to calculate both extreme ranges of weather data measurements and partly provide means to assess qualification of data which fall within the extremes at the 23 meteorological weather stations. Generally speaking, maximum temperature, minimum temperature, relative humidity, dew point temperature are in the range of reasonable accuracy. However, there found some outliers of the brightness sunshine hours in Cheonan station. Also some years in Gwangju, Seoul, Wonju, Busan, and Jeju never reach to their upper limit and perhaps the calibration of the equipment is doubtful. The users need to take cautions in using the brightness sunshine hour data in preparation of water resources planning and management by estimating evapotranspiration and river discharge, and/or growth rate of the algae (phytoplankton).

The Micro Heat Flux Sensor using Electroplated Copper layers (구리 도금층을 이용한 미세 열유속 센서)

  • 오석환;전재철;김무환;이승섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.226-231
    • /
    • 2000
  • New types of the micro heat flux sensor are designed and fabricated using SU-8 and Cu electroplating. And then calibrated under convection environment. The thermal path was made by SU-8 structure and electroplated Cu layers. The bottom surface of the micro heat flux sensor receives the heat flux from the wall, Then the heat flows along the Cu layers and drains out to the environment with producing the temperature difference at the upper layer of Cu. By measuring this temperature difference, the heat flux from the wall can be obtained. The temperature difference is measured by thermopile which is composed of Ni-Cr pairs or Al-chromel pairs. The calibration is accomplished under convection environment because it is most frequent situation. The range of the sensitivity is 0.11~2.02$\mu$V/(㎽/$\textrm{cm}^2$) for the various heat flux and Reynolds numbers.

  • PDF

NUMERICAL ANALYSIS PROCEDURE FOR PREDICTING TEMPERATURE FIELD IN DESIGN OF AUTOMOTIVE FRICTION CLUTCH

  • LEE B.;CHO C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • In design of the friction clutches of automobiles, knowledge on the thermo-elasticity a priori is very informative in the initial design stage. Especially, the precise prediction technique of maximum temperature and stress should be requested in design of mechanical clutches for their durability and compactness. In this study, an efficient and reliable analysis technique for the design of the mechanical clutches by using computer modeling and numerical method was developed. A commercial software STAR-$CD^{TM}$ was used to find the convective heat-transfer coefficients. MSC/$NASTRAN^{TM}$ software was followed to predict the temperature of clutch with utilization of estimated coefficients. Some experiments were also performed with a dynamometer to verify the procedure and calibrate the thermal load. As a conclusion, a design procedure, including numerical steps and experimental techniques for calibration, was proposed.

Effects of Temperature and Heavy Metals on Extractable Lipofuscin in the Blue Crab, Callinectes sapidus

  • Ju, Se-Jong;Harvey, H.R.
    • Journal of the korean society of oceanography
    • /
    • v.37 no.4
    • /
    • pp.232-241
    • /
    • 2002
  • The potential role of environmental factors on extractable lipofuscin accumulation rate in the blue crab was studied by examining the effect of temperature on laboratory reared blue crabs and the effect of trace metals from samples collected at impacted sites (Baltimore Harbor) and a relatively pristine site (outdoor ponds at Horn Point Laboratory, Cambridge, MD, USA). Lipofuscin levels did not significantly related with sampling sites or heavy metal concentrations in the crab tissue. Heavy metal body burden was highly variable among sampling sites and tissue types but significantly higher for both impacted areas (Curtis Creek and Inner Harbor) in comparison to the reference site. Among tissue types, gills showed the highest metal concentrations with the exception of Hg, which was highest in muscle tissue. For two groups of crabs that were held at either ambient (4 to 1$0^{\circ}C$) or heated seawater (19$^{\circ}C$) for two months, normalized-lipofuscin levels were significantly different (P-0.001). Results suggest that temperature may affect lipofuscin accumulation (=0.25ng-lipofuscin/mg-protein/temperature-degree day). Therefore, temperature should be considered for accurate age calibration of crab populations using lipofuscin.

Distribution of Surface Temperature and Chlorophyll-a in Lake Soyang using Remote Sensing Techniques (원격탐사기법에 의한 소양호의 표층수온과 엽록소 분포)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • The Landsat Thematic Mapper (TM) has suggested that spatial and spectral characteristics would be suited to evaluate water quality of lake. But, TM has not been commonly used for the analysis of in-land water quality, such as surface water temperature, chlorophyll-a, suspended sediments, and Secchi depth in domestic research. This paper summarizes the analysis of Landsat 5 - TM image collected on 22 Feb 1996 for evaluation of chlorophyll-a and surface temperature in the Lake Soyang. And, field measurements collected in the Lake Soyang were used to obtain water optical algorithms for calibration of satellite data. It is concluded that we can assess chlorophyll-a with remote sensing reflectance and surface temperature with thermal band in lake Soyang. However, surface temperature calculated with thermal band of Landsat TM are underestimated. Relationship between remote sensing reflectance and chlorophyll-a using the ratio of TM band 1 and band 3 is as follows; Y = 17.206 - 6.4711 * (Rrs(band1) / Rrs(band3)) $R^2$=0.8762 and, using the ratio of TM band 1 and band 2 as follows; Y = 57.77 - 35.771 * (Rrs(band1) / Rrs(band2)) $R^2$=0.8317.

  • PDF