NUMERICAL ANALYSIS PROCEDURE FOR PREDICTING TEMPERATURE FIELD IN DESIGN OF AUTOMOTIVE FRICTION CLUTCH

  • LEE B. (Department of Mechanical Engineering, Inha University) ;
  • CHO C. (Department of Mechanical Engineering, Inha University)
  • Published : 2006.02.01

Abstract

In design of the friction clutches of automobiles, knowledge on the thermo-elasticity a priori is very informative in the initial design stage. Especially, the precise prediction technique of maximum temperature and stress should be requested in design of mechanical clutches for their durability and compactness. In this study, an efficient and reliable analysis technique for the design of the mechanical clutches by using computer modeling and numerical method was developed. A commercial software STAR-$CD^{TM}$ was used to find the convective heat-transfer coefficients. MSC/$NASTRAN^{TM}$ software was followed to predict the temperature of clutch with utilization of estimated coefficients. Some experiments were also performed with a dynamometer to verify the procedure and calibrate the thermal load. As a conclusion, a design procedure, including numerical steps and experimental techniques for calibration, was proposed.

Keywords

References

  1. Arora, R. C. and Stokes, V. K. (1972). On the heat transfer between two rotating disks. Int. J. Heat Mass Transfer, 15, 2119-2132 https://doi.org/10.1016/0017-9310(72)90036-1
  2. Bathe, K. J. (1996). Finite Element Procedures. Prentice-Hall, Inc.. New Jersey
  3. Beretta, G. P. and Malfa, E. (2003). Flow and heat transfer in cavities between rotor and stator disks. Int. J. Heat Mass Transfer, 46, 2715-2726 https://doi.org/10.1016/S0017-9310(03)00065-6
  4. CD Adapco Group. (2003). Methodology STAR-CD Ver.3.15. CD Adapco Group. London, UK
  5. Chainky, M. (1994). MSC/NASTRAN Thermal Analysis User's Guide V 68. The Macneal-Schwendler Co. Santa Ana, CA, USA
  6. Cho, C. and Ahn, S. (1999). Periodic hot spots simulation during intermittent contact on a disc brake rotor. Proc. 32th Int. Symp. Automotive Technology & Automation 8, 2, 185-194
  7. Cho, C. and Ahn, S. (2001). Thermo-elastic analysis for chattering phenomenon of automotive disc brake. Int. J. Korean Society of Mechanical Engineers 5, 5, 569-579
  8. Choi, J., Kim, D., Lee, I., Cha, B. and Kang, M. (2002) Transient thermoelastic analysis of disk brakes using finite element method. Trans. Korean Society of Automotive Engineers 10, 5, 160-167
  9. Dow, T. A. and Burton, R. A. (1997). Thermoelastic instability of sliding contact in the absence of wear. Wear, 19, 315-328 https://doi.org/10.1016/0043-1648(72)90123-8
  10. Ercole, G., Mattiazzo, G., Mauro, S., Velardocchia, M., Amisano, F. and Serra, G. (2000). Experimental methodologies to determine diaphragm spring clutch characteristics. SAE Paper No. 2000-01-1151
  11. Fukano, A. and Matsui, A. (1986). Development of discbrake design method using computer simulation of heat phenomena. SAE Paper No. 860634
  12. Grieve, D. G., Barton, D. C., Crolla, D. A. and Buckingham, J. T. (1998). Design of a lightweight automotive brake disc using finite element and Taguchi techniques. Proc. Instn. Mech. Engrs. Part D, 212, 4, 245-254
  13. Heo, J., Cho, c, Cho, H., Kim, D. and Han, K. (2002). Numerical analysis procedures for reliable design of automotive mechanical clutches. SAE Paper No. 200201-0762
  14. Holman, J. P. (2001). Heat Transfer. 9th Edn. McGrawHill. New York
  15. Jeng, D. R., DeWitt, K. J. and Lee, M. H. (1979). Forced convection over rotating bodies with non-uniform surface temperature. Int. J Heat Mass Transfer, 22, 89-98 https://doi.org/10.1016/0017-9310(79)90101-7
  16. Kang, S., Kim, C., Lee, D. and Kim, H. (2003) The thermal analysis of brake discusing the solid model and 2D coupled model. Trans. Korean Society of Automotive Engineers 11, 6, 93-100
  17. Kennedy, Jr F. E. (1981). Surface temperature in sliding systems-A finite element analysis. ASME J. Lubrication Technology, 103, 90-96
  18. Lee, C. Y., Chai, Y. S., Kwon, J. D., Nam, W. H. and Kim, T. H. (2000). Finite element analysis and optimal design of automobile clutch diaphragm spring. J. Korean Society of Mechanical Engineers 24, 6, 1616-1623
  19. Limpert, R. (1998). Brake Design and Safety. Society of Automotive Engineers, Inc
  20. Murali, M. R. (1998). Failure analysis of center plate ofa clutch and brake combination using finite elements. SAE Paper No. 982799
  21. Nunney, M. J. (1998). Automotive Technology. Society of Automotive Engineers, Inc. Warrendale. PA
  22. Oehlbeck, D. L. and Erian, F. F. (1979). Heat transfer from axisymmetric sources at the surface of a rotating disk. Int. J. Heat Mass Transfer, 22, 601-610 https://doi.org/10.1016/0017-9310(79)90063-2
  23. Orthwein, W. C. (1986). Clutches and Brakes. Marcell Dekker, Inc.. New York. U.S.A
  24. Park, Y. C. and Park, D. S. (2000). Thermal stress analysis of brake drum by using finite element analysis. J. Korean Society of Precision Engineering 8, 3,77-84
  25. Reymond, M. and Miller, M. (1994). MSCINASTRAN Quick Reference Guide V 68. The Macneal-Schwendler Co
  26. Shin, K., Brennan, M. J., Joe, Y-G. and Oh, J-E. (2004). Simple models to investigate the effect of velocity dependent friction on the disc brake squeal noise. Int. J. Automotive Technology 5, 1, 61-67
  27. Sim, Y. S. and Yang, W. J. (1984). Numerical study on heat transfer in laminar flow through co-rotating parallel disks. Int. J. Heat Mass Transfer 27, 11, 1963-1970 https://doi.org/10.1016/0017-9310(84)90184-4
  28. Velardocchia, M., Ercole, G., Mattiazzo, G., Mauro, S. and Amisona, F. (1999). Diaphragm spring clutch dynamic characteristic test bench. SAE Paper No. 1999-01-0737
  29. Zagrodzki, P. and Truncone, S. (2003). Generation of hot spots in a wet multidisk clutch during short-term engagement. Wear 254, 5, 474-491 https://doi.org/10.1016/S0043-1648(03)00019-X
  30. Zagrodzki, P. and Wagoner, P. (2002). Thermo-mechanical effects in a single-sided multidisk clutchlbrake design. SAE Paper No. 2002-01-1439